/****************************************************************************** * * Copyright(c) 2009-2010 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * * Larry Finger * *****************************************************************************/ #include #include #include "wifi.h" #include "rc.h" #include "base.h" #include "efuse.h" #include "cam.h" #include "ps.h" #include "regd.h" #include "pci.h" /* *NOTICE!!!: This file will be very big, we hsould *keep it clear under follwing roles: * *This file include follwing part, so, if you add new *functions into this file, please check which part it *should includes. or check if you should add new part *for this file: * *1) mac80211 init functions *2) tx information functions *3) functions called by core.c *4) wq & timer callback functions *5) frame process functions *6) IOT functions *7) sysfs functions *8) vif functions *9) ... */ /********************************************************* * * mac80211 init functions * *********************************************************/ static struct ieee80211_channel rtl_channeltable_2g[] = { {.center_freq = 2412,.hw_value = 1,}, {.center_freq = 2417,.hw_value = 2,}, {.center_freq = 2422,.hw_value = 3,}, {.center_freq = 2427,.hw_value = 4,}, {.center_freq = 2432,.hw_value = 5,}, {.center_freq = 2437,.hw_value = 6,}, {.center_freq = 2442,.hw_value = 7,}, {.center_freq = 2447,.hw_value = 8,}, {.center_freq = 2452,.hw_value = 9,}, {.center_freq = 2457,.hw_value = 10,}, {.center_freq = 2462,.hw_value = 11,}, {.center_freq = 2467,.hw_value = 12,}, {.center_freq = 2472,.hw_value = 13,}, {.center_freq = 2484,.hw_value = 14,}, }; static struct ieee80211_channel rtl_channeltable_5g[] = { {.center_freq = 5180,.hw_value = 36,}, {.center_freq = 5200,.hw_value = 40,}, {.center_freq = 5220,.hw_value = 44,}, {.center_freq = 5240,.hw_value = 48,}, {.center_freq = 5260,.hw_value = 52,}, {.center_freq = 5280,.hw_value = 56,}, {.center_freq = 5300,.hw_value = 60,}, {.center_freq = 5320,.hw_value = 64,}, {.center_freq = 5500,.hw_value = 100,}, {.center_freq = 5520,.hw_value = 104,}, {.center_freq = 5540,.hw_value = 108,}, {.center_freq = 5560,.hw_value = 112,}, {.center_freq = 5580,.hw_value = 116,}, {.center_freq = 5600,.hw_value = 120,}, {.center_freq = 5620,.hw_value = 124,}, {.center_freq = 5640,.hw_value = 128,}, {.center_freq = 5660,.hw_value = 132,}, {.center_freq = 5680,.hw_value = 136,}, {.center_freq = 5700,.hw_value = 140,}, {.center_freq = 5745,.hw_value = 149,}, {.center_freq = 5765,.hw_value = 153,}, {.center_freq = 5785,.hw_value = 157,}, {.center_freq = 5805,.hw_value = 161,}, {.center_freq = 5825,.hw_value = 165,}, }; static struct ieee80211_rate rtl_ratetable_2g[] = { {.bitrate = 10,.hw_value = 0x00,}, {.bitrate = 20,.hw_value = 0x01,}, {.bitrate = 55,.hw_value = 0x02,}, {.bitrate = 110,.hw_value = 0x03,}, {.bitrate = 60,.hw_value = 0x04,}, {.bitrate = 90,.hw_value = 0x05,}, {.bitrate = 120,.hw_value = 0x06,}, {.bitrate = 180,.hw_value = 0x07,}, {.bitrate = 240,.hw_value = 0x08,}, {.bitrate = 360,.hw_value = 0x09,}, {.bitrate = 480,.hw_value = 0x0a,}, {.bitrate = 540,.hw_value = 0x0b,}, }; static struct ieee80211_rate rtl_ratetable_5g[] = { {.bitrate = 60,.hw_value = 0x04,}, {.bitrate = 90,.hw_value = 0x05,}, {.bitrate = 120,.hw_value = 0x06,}, {.bitrate = 180,.hw_value = 0x07,}, {.bitrate = 240,.hw_value = 0x08,}, {.bitrate = 360,.hw_value = 0x09,}, {.bitrate = 480,.hw_value = 0x0a,}, {.bitrate = 540,.hw_value = 0x0b,}, }; static const struct ieee80211_supported_band rtl_band_2ghz = { .band = IEEE80211_BAND_2GHZ, .channels = rtl_channeltable_2g, .n_channels = ARRAY_SIZE(rtl_channeltable_2g), .bitrates = rtl_ratetable_2g, .n_bitrates = ARRAY_SIZE(rtl_ratetable_2g), .ht_cap = {0}, }; static struct ieee80211_supported_band rtl_band_5ghz = { .band = IEEE80211_BAND_5GHZ, .channels = rtl_channeltable_5g, .n_channels = ARRAY_SIZE(rtl_channeltable_5g), .bitrates = rtl_ratetable_5g, .n_bitrates = ARRAY_SIZE(rtl_ratetable_5g), .ht_cap = {0}, }; static const u8 tid_to_ac[] = { 2, /* IEEE80211_AC_BE */ 3, /* IEEE80211_AC_BK */ 3, /* IEEE80211_AC_BK */ 2, /* IEEE80211_AC_BE */ 1, /* IEEE80211_AC_VI */ 1, /* IEEE80211_AC_VI */ 0, /* IEEE80211_AC_VO */ 0, /* IEEE80211_AC_VO */ }; u8 rtl_tid_to_ac(struct ieee80211_hw *hw, u8 tid) { return tid_to_ac[tid]; } static void _rtl_init_hw_ht_capab(struct ieee80211_hw *hw, struct ieee80211_sta_ht_cap *ht_cap) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); ht_cap->ht_supported = true; ht_cap->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_DSSSCCK40 | IEEE80211_HT_CAP_MAX_AMSDU; if (rtlpriv->rtlhal.disable_amsdu_8k) ht_cap->cap &= ~IEEE80211_HT_CAP_MAX_AMSDU; /* *Maximum length of AMPDU that the STA can receive. *Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) */ ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; /*Minimum MPDU start spacing , */ ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16; ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; /* *hw->wiphy->bands[IEEE80211_BAND_2GHZ] *base on ant_num *rx_mask: RX mask *if rx_ant =1 rx_mask[0]=0xff;==>MCS0-MCS7 *if rx_ant =2 rx_mask[1]=0xff;==>MCS8-MCS15 *if rx_ant >=3 rx_mask[2]=0xff; *if BW_40 rx_mask[4]=0x01; *highest supported RX rate */ if (rtlpriv->dm.supp_phymode_switch) { RT_TRACE(COMP_INIT, DBG_EMERG, ("Support phy mode switch\n")); ht_cap->mcs.rx_mask[0] = 0xFF; ht_cap->mcs.rx_mask[1] = 0xFF; ht_cap->mcs.rx_mask[4] = 0x01; ht_cap->mcs.rx_highest = MAX_BIT_RATE_40MHZ_MCS15; } else { if (get_rf_type(rtlphy) == RF_1T2R || get_rf_type(rtlphy) == RF_2T2R) { RT_TRACE(COMP_INIT, DBG_DMESG, ("1T2R or 2T2R\n")); ht_cap->mcs.rx_mask[0] = 0xFF; ht_cap->mcs.rx_mask[1] = 0xFF; ht_cap->mcs.rx_mask[4] = 0x01; ht_cap->mcs.rx_highest = MAX_BIT_RATE_40MHZ_MCS15; } else if (get_rf_type(rtlphy) == RF_1T1R) { RT_TRACE(COMP_INIT, DBG_DMESG, ("1T1R\n")); ht_cap->mcs.rx_mask[0] = 0xFF; ht_cap->mcs.rx_mask[1] = 0x00; ht_cap->mcs.rx_mask[4] = 0x01; ht_cap->mcs.rx_highest = MAX_BIT_RATE_40MHZ_MCS7; } } } static void _rtl_init_mac80211(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct ieee80211_supported_band *sband; if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY && rtlhal->bandset == BAND_ON_BOTH) { /* 1: 2.4 G bands */ /* <1> use mac->bands as mem for hw->wiphy->bands */ sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]); /* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ] * to default value(1T1R) */ memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]), &rtl_band_2ghz, sizeof(struct ieee80211_supported_band)); /* <3> init ht cap base on ant_num */ _rtl_init_hw_ht_capab(hw, &sband->ht_cap); /* <4> set mac->sband to wiphy->sband */ hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband; /* 2: 5 G bands */ /* <1> use mac->bands as mem for hw->wiphy->bands */ sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]); /* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ] * to default value(1T1R) */ memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]), &rtl_band_5ghz, sizeof(struct ieee80211_supported_band)); /* <3> init ht cap base on ant_num */ _rtl_init_hw_ht_capab(hw, &sband->ht_cap); /* <4> set mac->sband to wiphy->sband */ hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband; } else { if (rtlhal->current_bandtype == BAND_ON_2_4G) { /* <1> use mac->bands as mem for hw->wiphy->bands */ sband = &(rtlmac->bands[IEEE80211_BAND_2GHZ]); /* <2> set hw->wiphy->bands[IEEE80211_BAND_2GHZ] * to default value(1T1R) */ memcpy(&(rtlmac->bands[IEEE80211_BAND_2GHZ]), &rtl_band_2ghz, sizeof(struct ieee80211_supported_band)); /* <3> init ht cap base on ant_num */ _rtl_init_hw_ht_capab(hw, &sband->ht_cap); /* <4> set mac->sband to wiphy->sband */ hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband; } else if (rtlhal->current_bandtype == BAND_ON_5G) { /* <1> use mac->bands as mem for hw->wiphy->bands */ sband = &(rtlmac->bands[IEEE80211_BAND_5GHZ]); /* <2> set hw->wiphy->bands[IEEE80211_BAND_5GHZ] * to default value(1T1R) */ memcpy(&(rtlmac->bands[IEEE80211_BAND_5GHZ]), &rtl_band_5ghz, sizeof(struct ieee80211_supported_band)); /* <3> init ht cap base on ant_num */ _rtl_init_hw_ht_capab(hw, &sband->ht_cap); /* <4> set mac->sband to wiphy->sband */ hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband; } else { RT_TRACE(COMP_INIT, DBG_EMERG, ("Err BAND %d\n", rtlhal->current_bandtype)); } } /* <5> set hw caps */ hw->flags = IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_RX_INCLUDES_FCS | IEEE80211_HW_BEACON_FILTER | IEEE80211_HW_AMPDU_AGGREGATION | IEEE80211_HW_REPORTS_TX_ACK_STATUS | IEEE80211_HW_CONNECTION_MONITOR | /* IEEE80211_HW_SUPPORTS_CQM_RSSI | */ IEEE80211_HW_MFP_CAPABLE | 0; /* swlps or hwlps has been set in diff chip in init_sw_vars */ if (rtlpriv->psc.b_swctrl_lps) hw->flags |= IEEE80211_HW_SUPPORTS_PS | IEEE80211_HW_PS_NULLFUNC_STACK | /* IEEE80211_HW_SUPPORTS_DYNAMIC_PS | */ 0; hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MESH_POINT); #if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,39)) hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; #endif hw->wiphy->rts_threshold = 2347; hw->queues = AC_MAX; hw->extra_tx_headroom = RTL_TX_HEADER_SIZE; /* TODO: Correct this value for our hw */ /* TODO: define these hard code value */ hw->channel_change_time = 100; hw->max_listen_interval = 10; hw->max_rate_tries = 4; /* hw->max_rates = 1; */ hw->sta_data_size = sizeof(struct rtl_sta_info); #ifdef VIF_TODO hw->vif_data_size = sizeof(struct rtl_vif_info); #endif /* <6> mac address */ if (is_valid_ether_addr(rtlefuse->dev_addr)) { SET_IEEE80211_PERM_ADDR(hw, rtlefuse->dev_addr); } else { u8 rtlmac[] = { 0x00, 0xe0, 0x4c, 0x81, 0x92, 0x00 }; get_random_bytes((rtlmac + (ETH_ALEN - 1)), 1); SET_IEEE80211_PERM_ADDR(hw, rtlmac); } } static void _rtl_init_deferred_work(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); /* <1> timer */ init_timer(&rtlpriv->works.watchdog_timer); setup_timer(&rtlpriv->works.watchdog_timer, rtl_watch_dog_timer_callback, (unsigned long)hw); init_timer(&rtlpriv->works.dualmac_easyconcurrent_retrytimer); setup_timer(&rtlpriv->works.dualmac_easyconcurrent_retrytimer, rtl_easy_concurrent_retrytimer_callback, (unsigned long)hw); /* <2> work queue */ rtlpriv->works.hw = hw; /**/ #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,37)) /**/ rtlpriv->works.rtl_wq = alloc_workqueue(rtlpriv->cfg->name, 0, 0); /**/ #else rtlpriv->works.rtl_wq = create_workqueue(rtlpriv->cfg->name); #endif /**/ INIT_DELAYED_WORK(&rtlpriv->works.watchdog_wq, (void *)rtl_watchdog_wq_callback); INIT_DELAYED_WORK(&rtlpriv->works.ips_nic_off_wq, (void *)rtl_ips_nic_off_wq_callback); INIT_DELAYED_WORK(&rtlpriv->works.ps_work, (void *)rtl_swlps_wq_callback); INIT_DELAYED_WORK(&rtlpriv->works.ps_rfon_wq, (void *)rtl_swlps_rfon_wq_callback); INIT_DELAYED_WORK(&rtlpriv->works.fwevt_wq, (void *)rtl_fwevt_wq_callback); } void rtl_deinit_deferred_work(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); del_timer_sync(&rtlpriv->works.watchdog_timer); cancel_delayed_work(&rtlpriv->works.watchdog_wq); cancel_delayed_work(&rtlpriv->works.ips_nic_off_wq); cancel_delayed_work(&rtlpriv->works.ps_work); cancel_delayed_work(&rtlpriv->works.ps_rfon_wq); cancel_delayed_work(&rtlpriv->works.fwevt_wq); } void rtl_init_rfkill(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); bool radio_state; bool blocked; u8 valid = 0; /*set init state to on */ rtlpriv->rfkill.rfkill_state = 1; wiphy_rfkill_set_hw_state(hw->wiphy, 0); radio_state = rtlpriv->cfg->ops->radio_onoff_checking(hw, &valid); if (valid) { printk(KERN_INFO "rtlwifi: wireless switch is %s\n", rtlpriv->rfkill.rfkill_state ? "on" : "off"); rtlpriv->rfkill.rfkill_state = radio_state; blocked = (rtlpriv->rfkill.rfkill_state == 1) ? 0 : 1; wiphy_rfkill_set_hw_state(hw->wiphy, blocked); } wiphy_rfkill_start_polling(hw->wiphy); } void rtl_deinit_rfkill(struct ieee80211_hw *hw) { wiphy_rfkill_stop_polling(hw->wiphy); } #ifdef VIF_TODO static void rtl_init_vif(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); INIT_LIST_HEAD(&rtlpriv->vif_priv.vif_list); rtlpriv->vif_priv.vifs = 0; } #endif int rtl_init_core(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw)); /* <1> init mac80211 */ _rtl_init_mac80211(hw); rtlmac->hw = hw; rtlmac->link_state = MAC80211_NOLINK; /* <2> rate control register */ hw->rate_control_algorithm = "rtl_rc"; /* * <3> init CRDA must come after init * mac80211 hw in _rtl_init_mac80211. */ if (rtl_regd_init(hw, rtl_reg_notifier)) { RT_TRACE(COMP_ERR, DBG_EMERG, ("REGD init failed\n")); return 1; } /* <4> locks */ mutex_init(&rtlpriv->locks.conf_mutex); spin_lock_init(&rtlpriv->locks.ips_lock); spin_lock_init(&rtlpriv->locks.irq_th_lock); spin_lock_init(&rtlpriv->locks.h2c_lock); spin_lock_init(&rtlpriv->locks.rf_ps_lock); spin_lock_init(&rtlpriv->locks.rf_lock); spin_lock_init(&rtlpriv->locks.lps_lock); spin_lock_init(&rtlpriv->locks.waitq_lock); spin_lock_init(&rtlpriv->locks.entry_list_lock); spin_lock_init(&rtlpriv->locks.cck_and_rw_pagea_lock); spin_lock_init(&rtlpriv->locks.check_sendpkt_lock); /* <5> init list */ INIT_LIST_HEAD(&rtlpriv->entry_list); /* <6> init deferred work */ _rtl_init_deferred_work(hw); /* <7> */ #ifdef VIF_TODO rtl_init_vif(hw); #endif return 0; } void rtl_deinit_core(struct ieee80211_hw *hw) { } void rtl_init_rx_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *) (&mac->rx_conf)); } /********************************************************* * * tx information functions * *********************************************************/ static void _rtl_qurey_shortpreamble_mode(struct ieee80211_hw *hw, struct rtl_tcb_desc *tcb_desc, struct ieee80211_tx_info *info) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 rate_flag = info->control.rates[0].flags; tcb_desc->use_shortpreamble = false; /* 1M can only use Long Preamble. 11B spec */ if (tcb_desc->hw_rate == rtlpriv->cfg->maps[RTL_RC_CCK_RATE1M]) return; else if (rate_flag & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) tcb_desc->use_shortpreamble = true; return; } static void _rtl_query_shortgi(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct rtl_tcb_desc *tcb_desc, struct ieee80211_tx_info *info) { struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u8 rate_flag = info->control.rates[0].flags; u8 sgi_40 = 0, sgi_20 = 0, bw_40 = 0; tcb_desc->use_shortgi = false; if (sta == NULL) return; sgi_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40; sgi_20 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20; if (!(sta->ht_cap.ht_supported)) return; if (!sgi_40 && !sgi_20) return; if (mac->opmode == NL80211_IFTYPE_STATION) bw_40 = mac->bw_40; else if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC || mac->opmode == NL80211_IFTYPE_MESH_POINT) bw_40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40; if ((bw_40 == true) && sgi_40) tcb_desc->use_shortgi = true; else if ((bw_40 == false) && sgi_20) tcb_desc->use_shortgi = true; if (!(rate_flag & IEEE80211_TX_RC_SHORT_GI)) tcb_desc->use_shortgi = false; } static void _rtl_query_protection_mode(struct ieee80211_hw *hw, struct rtl_tcb_desc *tcb_desc, struct ieee80211_tx_info *info) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 rate_flag = info->control.rates[0].flags; /* Common Settings */ tcb_desc->b_rts_stbc = false; tcb_desc->b_cts_enable = false; tcb_desc->rts_sc = 0; tcb_desc->b_rts_bw = false; tcb_desc->b_rts_use_shortpreamble = false; tcb_desc->b_rts_use_shortgi = false; if (rate_flag & IEEE80211_TX_RC_USE_CTS_PROTECT) { /* Use CTS-to-SELF in protection mode. */ tcb_desc->b_rts_enable = true; tcb_desc->b_cts_enable = true; tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M]; } else if (rate_flag & IEEE80211_TX_RC_USE_RTS_CTS) { /* Use RTS-CTS in protection mode. */ tcb_desc->b_rts_enable = true; tcb_desc->rts_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE24M]; } } static void _rtl_txrate_selectmode(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct rtl_tcb_desc *tcb_desc) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_sta_info *sta_entry = NULL; u8 ratr_index = 7; if (sta) { sta_entry = (struct rtl_sta_info *) sta->drv_priv; ratr_index = sta_entry->ratr_index; } if (!tcb_desc->disable_ratefallback || !tcb_desc->use_driver_rate) { if (mac->opmode == NL80211_IFTYPE_STATION) { tcb_desc->ratr_index = 0; } else if (mac->opmode == NL80211_IFTYPE_ADHOC || mac->opmode == NL80211_IFTYPE_MESH_POINT) { if (tcb_desc->b_multicast || tcb_desc->b_broadcast) { tcb_desc->hw_rate = rtlpriv->cfg->maps[RTL_RC_CCK_RATE2M]; tcb_desc->use_driver_rate = 1; tcb_desc->ratr_index = RATR_INX_WIRELESS_MC; } else { tcb_desc->ratr_index = ratr_index; } } else if (mac->opmode == NL80211_IFTYPE_AP) { tcb_desc->ratr_index = ratr_index; } } if (rtlpriv->dm.b_useramask) { tcb_desc->ratr_index = ratr_index; /* TODO we will differentiate adhoc and station futrue */ if (mac->opmode == NL80211_IFTYPE_STATION || mac->opmode == NL80211_IFTYPE_MESH_POINT) { tcb_desc->mac_id = 0; if (mac->mode == WIRELESS_MODE_N_24G) { tcb_desc->ratr_index = RATR_INX_WIRELESS_NGB; } else if (mac->mode == WIRELESS_MODE_N_5G) { tcb_desc->ratr_index = RATR_INX_WIRELESS_NG; } else if (mac->mode & WIRELESS_MODE_G) { tcb_desc->ratr_index = RATR_INX_WIRELESS_GB; } else if (mac->mode & WIRELESS_MODE_B) { tcb_desc->ratr_index = RATR_INX_WIRELESS_B; } else if (mac->mode & WIRELESS_MODE_A) { tcb_desc->ratr_index = RATR_INX_WIRELESS_G; } } else if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC) { if (NULL != sta) { if (sta->aid > 0) { tcb_desc->mac_id = sta->aid + 1; } else { tcb_desc->mac_id = 1; } } else { tcb_desc->mac_id = 0; } } } } static void _rtl_query_bandwidth_mode(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct rtl_tcb_desc *tcb_desc) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); tcb_desc->b_packet_bw = false; if (!sta) return; if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC || mac->opmode == NL80211_IFTYPE_MESH_POINT) { if (!(sta->ht_cap.ht_supported) || !(sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40)) return; } else if (mac->opmode == NL80211_IFTYPE_STATION) { if (!mac->bw_40 || !(sta->ht_cap.ht_supported)) return; } if (tcb_desc->b_multicast || tcb_desc->b_broadcast) return; /*use legency rate, shall use 20MHz */ if (tcb_desc->hw_rate <= rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M]) return; tcb_desc->b_packet_bw = true; } static u8 _rtl_get_highest_n_rate(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); u8 hw_rate; if (get_rf_type(rtlphy) == RF_2T2R) hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS15]; else hw_rate = rtlpriv->cfg->maps[RTL_RC_HT_RATEMCS7]; return hw_rate; } void rtl_get_tcb_desc(struct ieee80211_hw *hw, struct ieee80211_tx_info *info, struct ieee80211_sta *sta, struct sk_buff *skb, struct rtl_tcb_desc *tcb_desc) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw)); struct ieee80211_hdr *hdr = rtl_get_hdr(skb); struct ieee80211_rate *txrate; u16 fc = rtl_get_fc(skb); txrate = ieee80211_get_tx_rate(hw, info); tcb_desc->hw_rate = txrate->hw_value; if (ieee80211_is_data(fc)) { /* *we set data rate INX 0 *in rtl_rc.c if skb is special data or *mgt which need low data rate. */ /* *So tcb_desc->hw_rate is just used for *special data and mgt frames */ if (info->control.rates[0].idx == 0 || ieee80211_is_nullfunc(fc)) { tcb_desc->use_driver_rate = true; tcb_desc->ratr_index = RATR_INX_WIRELESS_MC; tcb_desc->disable_ratefallback = 1; } else { /* *because hw will nerver use hw_rate *when tcb_desc->use_driver_rate = false *so we never set highest N rate here, *and N rate will all be controled by FW *when tcb_desc->use_driver_rate = false */ if (sta && (sta->ht_cap.ht_supported)) { tcb_desc->hw_rate = _rtl_get_highest_n_rate(hw); } else { if(rtlmac->mode == WIRELESS_MODE_B) { tcb_desc->hw_rate = rtlpriv->cfg->maps[RTL_RC_CCK_RATE11M]; } else { tcb_desc->hw_rate = rtlpriv->cfg->maps[RTL_RC_OFDM_RATE54M]; } } } if (is_multicast_ether_addr(ieee80211_get_DA(hdr))) tcb_desc->b_multicast = 1; else if (is_broadcast_ether_addr(ieee80211_get_DA(hdr))) tcb_desc->b_broadcast = 1; _rtl_txrate_selectmode(hw, sta, tcb_desc); _rtl_query_bandwidth_mode(hw, sta, tcb_desc); _rtl_qurey_shortpreamble_mode(hw, tcb_desc, info); _rtl_query_shortgi(hw, sta, tcb_desc, info); _rtl_query_protection_mode(hw, tcb_desc, info); } else { tcb_desc->use_driver_rate = true; tcb_desc->ratr_index = RATR_INX_WIRELESS_MC; tcb_desc->disable_ratefallback = 1; tcb_desc->mac_id = 0; tcb_desc->b_packet_bw = false; } } EXPORT_SYMBOL(rtl_get_tcb_desc); bool rtl_tx_mgmt_proc(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); u16 fc = rtl_get_fc(skb); if (rtlpriv->dm.supp_phymode_switch && mac->link_state < MAC80211_LINKED && (ieee80211_is_auth(fc) || ieee80211_is_probe_req(fc))) { if (rtlpriv->cfg->ops->check_switch_to_dmdp) rtlpriv->cfg->ops->check_switch_to_dmdp(hw); } if (ieee80211_is_auth(fc)) { RT_TRACE(COMP_SEND, DBG_DMESG, ("MAC80211_LINKING\n")); rtl_ips_nic_on(hw); mac->link_state = MAC80211_LINKING; /* Dul mac */ rtlpriv->phy.b_need_iqk = true; } return true; } struct sk_buff *rtl_make_del_ba(struct ieee80211_hw *hw, u8 *sa, u8 *bssid, u16 tid); bool rtl_action_proc(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx) { struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct ieee80211_hdr *hdr = rtl_get_hdr(skb); struct rtl_priv *rtlpriv = rtl_priv(hw); u16 fc = rtl_get_fc(skb); u8 *act = (u8 *) (((u8 *) skb->data + MAC80211_3ADDR_LEN)); u8 category; if (!ieee80211_is_action(fc)) return true; category = *act; act++; switch (category) { case ACT_CAT_BA: switch (*act) { case ACT_ADDBAREQ: if (mac->act_scanning) return false; RT_TRACE((COMP_SEND | COMP_RECV), DBG_DMESG, ("%s ACT_ADDBAREQ From :%pM\n", is_tx ? "Tx" : "Rx", hdr->addr2)); RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("req \n"), skb->data, skb->len); if (!is_tx) { struct ieee80211_sta *sta = NULL; struct rtl_sta_info *sta_entry = NULL; struct ieee80211_mgmt *mgmt = (void *)skb->data; u16 capab = 0, tid = 0; struct rtl_tid_data *tid_data; struct sk_buff *skb_delba = NULL; struct ieee80211_rx_status rx_status = { 0 }; sta = rtl_find_sta(hw, hdr->addr3); if (sta == NULL) { RT_TRACE((COMP_SEND | COMP_RECV), DBG_EMERG, ("sta is NULL\n")); return true; } sta_entry = (struct rtl_sta_info *)sta->drv_priv; if (!sta_entry) { return true; } capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab); tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2; tid_data = &sta_entry->tids[tid]; if (tid_data->agg.rx_agg_state == RTL_RX_AGG_START) { skb_delba = rtl_make_del_ba(hw, hdr->addr2, hdr->addr3, tid); if (skb_delba) { rx_status.freq = hw->conf.channel->center_freq; rx_status.band = hw->conf.channel->band; rx_status.flag |= RX_FLAG_DECRYPTED; rx_status.flag |= RX_FLAG_MACTIME_MPDU; rx_status.rate_idx = 0; rx_status.signal = 50 + 10; memcpy(IEEE80211_SKB_RXCB(skb_delba), &rx_status, sizeof(rx_status)); RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("fake del\n"), skb_delba->data, skb_delba->len); ieee80211_rx_irqsafe(hw, skb_delba); } } } break; case ACT_ADDBARSP: RT_TRACE((COMP_SEND | COMP_RECV), DBG_DMESG, ("%s ACT_ADDBARSP From :%pM\n", is_tx ? "Tx" : "Rx", hdr->addr2)); break; case ACT_DELBA: RT_TRACE((COMP_SEND | COMP_RECV), DBG_DMESG, ("ACT_ADDBADEL From :%pM\n", hdr->addr2)); break; } break; default: break; } return true; } /*should call before software enc*/ u8 rtl_is_special_data(struct ieee80211_hw *hw, struct sk_buff *skb, u8 is_tx) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); u16 fc = rtl_get_fc(skb); u16 ether_type; u8 mac_hdr_len = ieee80211_get_hdrlen_from_skb(skb); const struct iphdr *ip; if (!ieee80211_is_data(fc)) goto end; ip = (struct iphdr *)((u8 *) skb->data + mac_hdr_len + SNAP_SIZE + PROTOC_TYPE_SIZE); ether_type = *(u16 *) ((u8 *) skb->data + mac_hdr_len + SNAP_SIZE); ether_type = ntohs(ether_type); if (ETH_P_IP == ether_type) { if (IPPROTO_UDP == ip->protocol) { struct udphdr *udp = (struct udphdr *)((u8 *) ip + (ip->ihl << 2)); if (((((u8 *) udp)[1] == 68) && (((u8 *) udp)[3] == 67)) || ((((u8 *) udp)[1] == 67) && (((u8 *) udp)[3] == 68))) { /* * 68 : UDP BOOTP client * 67 : UDP BOOTP server */ RT_TRACE((COMP_SEND | COMP_RECV), DBG_DMESG, ("dhcp %s !!\n", (is_tx) ? "Tx" : "Rx")); if (is_tx) { rtl_lps_leave(hw); ppsc->last_delaylps_stamp_jiffies = jiffies; } return true; } } } else if (ETH_P_ARP == ether_type) { if (is_tx) { rtl_lps_leave(hw); ppsc->last_delaylps_stamp_jiffies = jiffies; } return true; } else if (ETH_P_PAE == ether_type) { RT_TRACE((COMP_SEND | COMP_RECV), DBG_DMESG, ("802.1X %s EAPOL pkt!!\n", (is_tx) ? "Tx" : "Rx")); if (is_tx) { rtl_lps_leave(hw); ppsc->last_delaylps_stamp_jiffies = jiffies; } return true; } else if (0x86DD == ether_type) { return true; } end: return false; } /********************************************************* * * functions called by core.c * *********************************************************/ int rtl_tx_agg_start(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u16 tid, u16 *ssn) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tid_data *tid_data; struct rtl_sta_info *sta_entry = NULL; if (sta == NULL) return -EINVAL; if (unlikely(tid >= MAX_TID_COUNT)) return -EINVAL; sta_entry = (struct rtl_sta_info *)sta->drv_priv; if (!sta_entry) return -ENXIO; tid_data = &sta_entry->tids[tid]; RT_TRACE(COMP_SEND, DBG_DMESG, ("on ra = %pM tid = %d seq:%d\n", sta->addr, tid, tid_data->seq_number)); *ssn = tid_data->seq_number; tid_data->agg.agg_state = RTL_AGG_START; ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid); return 0; } int rtl_tx_agg_stop(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u16 tid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tid_data *tid_data; struct rtl_sta_info *sta_entry = NULL; if (sta == NULL) return -EINVAL; if (!sta->addr) { RT_TRACE(COMP_ERR, DBG_EMERG, ("ra = NULL\n")); return -EINVAL; } RT_TRACE(COMP_SEND, DBG_DMESG, ("on ra = %pM tid = %d\n", sta->addr, tid)); if (unlikely(tid >= MAX_TID_COUNT)) return -EINVAL; sta_entry = (struct rtl_sta_info *)sta->drv_priv; tid_data = &sta_entry->tids[tid]; sta_entry->tids[tid].agg.agg_state = RTL_AGG_STOP; ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); return 0; } int rtl_rx_agg_start(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u16 tid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tid_data *tid_data; struct rtl_sta_info *sta_entry = NULL; if (sta == NULL) return -EINVAL; if (unlikely(tid >= MAX_TID_COUNT)) return -EINVAL; sta_entry = (struct rtl_sta_info *)sta->drv_priv; if (!sta_entry) return -ENXIO; tid_data = &sta_entry->tids[tid]; RT_TRACE(COMP_RECV, DBG_DMESG, ("on ra = %pM tid = %d seq:%d\n", sta->addr, tid, tid_data->seq_number)); tid_data->agg.rx_agg_state = RTL_RX_AGG_START; return 0; } int rtl_rx_agg_stop(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u16 tid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tid_data *tid_data; struct rtl_sta_info *sta_entry = NULL; if (sta == NULL) return -EINVAL; if (!sta->addr) { RT_TRACE(COMP_ERR, DBG_EMERG, ("ra = NULL\n")); return -EINVAL; } RT_TRACE(COMP_SEND, DBG_DMESG, ("on ra = %pM tid = %d\n", sta->addr, tid)); if (unlikely(tid >= MAX_TID_COUNT)) return -EINVAL; sta_entry = (struct rtl_sta_info *)sta->drv_priv; tid_data = &sta_entry->tids[tid]; sta_entry->tids[tid].agg.rx_agg_state = RTL_RX_AGG_STOP; return 0; } int rtl_tx_agg_oper(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u16 tid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_tid_data *tid_data; struct rtl_sta_info *sta_entry = NULL; if (sta == NULL) return -EINVAL; if (!sta->addr) { RT_TRACE(COMP_ERR, DBG_EMERG, ("ra = NULL\n")); return -EINVAL; } RT_TRACE(COMP_SEND, DBG_DMESG, ("on ra = %pM tid = %d\n", sta->addr, tid)); if (unlikely(tid >= MAX_TID_COUNT)) return -EINVAL; sta_entry = (struct rtl_sta_info *)sta->drv_priv; tid_data = &sta_entry->tids[tid]; sta_entry->tids[tid].agg.agg_state = RTL_AGG_OPERATIONAL; return 0; } /********************************************************* * * wq & timer callback functions * *********************************************************/ /* this function is used for roaming */ void rtl_beacon_statistic(struct ieee80211_hw *hw, struct sk_buff *skb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; if (rtlpriv->mac80211.opmode != NL80211_IFTYPE_STATION) return; if (rtlpriv->mac80211.link_state < MAC80211_LINKED) return; /* check if this really is a beacon */ if (!ieee80211_is_beacon(hdr->frame_control) && !ieee80211_is_probe_resp(hdr->frame_control)) return; /* min. beacon length + FCS_LEN */ if (skb->len <= 40 + FCS_LEN) return; /* and only beacons from the associated BSSID, please */ if (compare_ether_addr(hdr->addr3, rtlpriv->mac80211.bssid)) return; rtlpriv->link_info.bcn_rx_inperiod ++; } void rtl_watchdog_wq_callback(void *data) { struct rtl_works *rtlworks = container_of_dwork_rtl(data, struct rtl_works, watchdog_wq); struct ieee80211_hw *hw = rtlworks->hw; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); bool b_busytraffic = false; bool b_tx_busy_traffic = false; bool b_rx_busy_traffic = false; bool b_higher_busytraffic = false; bool b_higher_busyrxtraffic = false; u8 idx, tid; u32 rx_cnt_inp4eriod = 0; u32 tx_cnt_inp4eriod = 0; u32 aver_rx_cnt_inperiod = 0; u32 aver_tx_cnt_inperiod = 0; u32 aver_tidtx_inperiod[MAX_TID_COUNT] = {0}; u32 tidtx_inp4eriod[MAX_TID_COUNT] = {0}; bool benter_ps = false; if (is_hal_stop(rtlhal)) return; /* <1> Determine if action frame is allowed */ if (mac->link_state > MAC80211_NOLINK) { if (mac->cnt_after_linked < 20) mac->cnt_after_linked++; } else { mac->cnt_after_linked = 0; } /* <2> to check if traffic busy, if * busytraffic we don't change channel */ if (mac->link_state >= MAC80211_LINKED) { /* (1) get aver_rx_cnt_inperiod & aver_tx_cnt_inperiod */ for (idx = 0; idx <= 2; idx++) { rtlpriv->link_info.num_rx_in4period[idx] = rtlpriv->link_info.num_rx_in4period[idx + 1]; rtlpriv->link_info.num_tx_in4period[idx] = rtlpriv->link_info.num_tx_in4period[idx + 1]; } rtlpriv->link_info.num_rx_in4period[3] = rtlpriv->link_info.num_rx_inperiod; rtlpriv->link_info.num_tx_in4period[3] = rtlpriv->link_info.num_tx_inperiod; for (idx = 0; idx <= 3; idx++) { rx_cnt_inp4eriod += rtlpriv->link_info.num_rx_in4period[idx]; tx_cnt_inp4eriod += rtlpriv->link_info.num_tx_in4period[idx]; } aver_rx_cnt_inperiod = rx_cnt_inp4eriod / 4; aver_tx_cnt_inperiod = tx_cnt_inp4eriod / 4; /* (2) check traffic busy */ if (aver_rx_cnt_inperiod > 100 || aver_tx_cnt_inperiod > 100) { b_busytraffic = true; if (aver_rx_cnt_inperiod > aver_tx_cnt_inperiod) b_rx_busy_traffic = true; else b_tx_busy_traffic = false; } /* Higher Tx/Rx data. */ if (aver_rx_cnt_inperiod > 4000 || aver_tx_cnt_inperiod > 4000) { b_higher_busytraffic = true; /* Extremely high Rx data. */ if (aver_rx_cnt_inperiod > 5000) b_higher_busyrxtraffic = true; } /* check every tid's tx traffic */ for (tid = 0; tid <= 7; tid++) { for (idx = 0; idx <= 2; idx++) rtlpriv->link_info.tidtx_in4period[tid][idx] = rtlpriv->link_info.tidtx_in4period[tid][idx + 1]; rtlpriv->link_info.tidtx_in4period[tid][3] = rtlpriv->link_info.tidtx_inperiod[tid]; for (idx = 0; idx <= 3; idx++) tidtx_inp4eriod[tid] += rtlpriv->link_info.tidtx_in4period[tid][idx]; aver_tidtx_inperiod[tid] = tidtx_inp4eriod[tid] / 4; if (aver_tidtx_inperiod[tid] > 5000) rtlpriv->link_info.higher_busytxtraffic[tid] = true; else rtlpriv->link_info.higher_busytxtraffic[tid] = false; } if (((rtlpriv->link_info.num_rx_inperiod + rtlpriv->link_info.num_tx_inperiod) > 8) || (rtlpriv->link_info.num_rx_inperiod > 2)) benter_ps = false; else benter_ps = true; /* LeisurePS only work in infra mode. */ if (benter_ps) rtl_lps_enter(hw); else rtl_lps_leave(hw); } rtlpriv->link_info.num_rx_inperiod = 0; rtlpriv->link_info.num_tx_inperiod = 0; for (tid = 0; tid <= 7; tid++) rtlpriv->link_info.tidtx_inperiod[tid] = 0; rtlpriv->link_info.b_busytraffic = b_busytraffic; rtlpriv->link_info.b_rx_busy_traffic = b_rx_busy_traffic; rtlpriv->link_info.b_tx_busy_traffic = b_tx_busy_traffic; rtlpriv->link_info.b_higher_busytraffic = b_higher_busytraffic; rtlpriv->link_info.b_higher_busyrxtraffic = b_higher_busyrxtraffic; /* <3> DM */ rtlpriv->cfg->ops->dm_watchdog(hw); /* <4> roaming */ if (mac->link_state == MAC80211_LINKED && mac->opmode == NL80211_IFTYPE_STATION) { if ((rtlpriv->link_info.bcn_rx_inperiod + rtlpriv->link_info.num_rx_inperiod) == 0) { rtlpriv->link_info.roam_times++; RT_TRACE(COMP_ERR, DBG_DMESG, ("AP off for %d s\n", (rtlpriv->link_info.roam_times * 2))); /* if we can't recv beacon for 6s, we should reconnect this AP */ if (rtlpriv->link_info.roam_times >= 3) { RT_TRACE(COMP_ERR, DBG_EMERG, ("AP off, try to reconnect now\n")); rtlpriv->link_info.roam_times = 0; ieee80211_connection_loss(rtlpriv->mac80211.vif); } } else { rtlpriv->link_info.roam_times = 0; } } rtlpriv->link_info.bcn_rx_inperiod = 0; } void rtl_watch_dog_timer_callback(unsigned long data) { struct ieee80211_hw *hw = (struct ieee80211_hw *)data; struct rtl_priv *rtlpriv = rtl_priv(hw); queue_delayed_work(rtlpriv->works.rtl_wq, &rtlpriv->works.watchdog_wq, 0); mod_timer(&rtlpriv->works.watchdog_timer, jiffies + MSECS(RTL_WATCH_DOG_TIME)); } void rtl_fwevt_wq_callback(void *data) { struct rtl_works *rtlworks = container_of_dwork_rtl(data, struct rtl_works, fwevt_wq); struct ieee80211_hw *hw = rtlworks->hw; struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpriv->cfg->ops->c2h_command_handle(hw); } void rtl_easy_concurrent_retrytimer_callback(unsigned long data) { struct ieee80211_hw *hw = (struct ieee80211_hw *)data; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_priv *buddy_priv = rtlpriv->buddy_priv; if(buddy_priv == NULL) return; rtlpriv->cfg->ops->dualmac_easy_concurrent(hw); } /********************************************************* * * frame process functions * *********************************************************/ u8 *rtl_find_ie(u8 *data, unsigned int len, u8 ie) { struct ieee80211_mgmt *mgmt = (void *)data; u8 *pos, *end; pos = (u8 *)mgmt->u.beacon.variable; end = data + len; while (pos < end) { if (pos + 2 + pos[1] > end) return NULL; if (pos[0] == ie) return pos; pos += 2 + pos[1]; } return NULL; } /* when we use 2 rx ants we send IEEE80211_SMPS_OFF */ /* when we use 1 rx ant we send IEEE80211_SMPS_STATIC */ struct sk_buff *rtl_make_smps_action(struct ieee80211_hw *hw, enum ieee80211_smps_mode smps, u8 *da, u8 *bssid) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct sk_buff *skb; struct ieee80211_mgmt_compat *action_frame; /* 27 = header + category + action + smps mode */ skb = dev_alloc_skb(27 + hw->extra_tx_headroom); if (!skb) return NULL; skb_reserve(skb, hw->extra_tx_headroom); action_frame = (void *)skb_put(skb, 27); memset(action_frame, 0, 27); memcpy(action_frame->da, da, ETH_ALEN); memcpy(action_frame->sa, rtlefuse->dev_addr, ETH_ALEN); memcpy(action_frame->bssid, bssid, ETH_ALEN); action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); action_frame->u.action.category = WLAN_CATEGORY_HT; action_frame->u.action.u.ht_smps.action = WLAN_HT_ACTION_SMPS; switch (smps) { case IEEE80211_SMPS_AUTOMATIC:/* 0 */ case IEEE80211_SMPS_NUM_MODES:/* 4 */ WARN_ON(1); case IEEE80211_SMPS_OFF:/* 1 */ /*MIMO_PS_NOLIMIT*/ action_frame->u.action.u.ht_smps.smps_control = WLAN_HT_SMPS_CONTROL_DISABLED;/* 0 */ break; case IEEE80211_SMPS_STATIC:/* 2 */ /*MIMO_PS_STATIC*/ action_frame->u.action.u.ht_smps.smps_control = WLAN_HT_SMPS_CONTROL_STATIC;/* 1 */ break; case IEEE80211_SMPS_DYNAMIC:/* 3 */ /*MIMO_PS_DYNAMIC*/ action_frame->u.action.u.ht_smps.smps_control = WLAN_HT_SMPS_CONTROL_DYNAMIC;/* 3 */ break; } return skb; } int rtl_send_smps_action(struct ieee80211_hw *hw, struct ieee80211_sta *sta, enum ieee80211_smps_mode smps) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct sk_buff *skb = NULL; struct rtl_tcb_desc tcb_desc; u8 bssid[ETH_ALEN] = {0}; memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc)); if (rtlpriv->mac80211.act_scanning) goto err_free; if (!sta) goto err_free; if (unlikely(is_hal_stop(rtlhal) || ppsc->rfpwr_state != ERFON)) goto err_free; if (!test_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status)) goto err_free; if (rtlpriv->mac80211.opmode == NL80211_IFTYPE_AP) memcpy(bssid, rtlpriv->efuse.dev_addr, ETH_ALEN); else memcpy(bssid, rtlpriv->mac80211.bssid, ETH_ALEN); skb = rtl_make_smps_action(hw, smps, sta->addr, bssid); /* this is a type = mgmt * stype = action frame */ if (skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct rtl_sta_info *sta_entry = (struct rtl_sta_info *) sta->drv_priv; sta_entry->mimo_ps = smps; /* rtlpriv->cfg->ops->update_rate_tbl(hw, sta, 0); */ info->control.rates[0].idx = 0; info->control.sta = sta; info->band = hw->conf.channel->band; rtlpriv->intf_ops->adapter_tx(hw, skb, &tcb_desc); } return 1; err_free: return 0; } EXPORT_SYMBOL(rtl_send_smps_action); /* because mac80211 have issues when can receive del ba * so here we just make a fake del_ba if we receive a ba_req * but rx_agg was opened to let mac80211 release some ba * related resources, so please this del_ba for tx */ struct sk_buff *rtl_make_del_ba(struct ieee80211_hw *hw, u8 *sa, u8 *bssid, u16 tid) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct sk_buff *skb; struct ieee80211_mgmt *action_frame; u16 params; /* 27 = header + category + action + smps mode */ skb = dev_alloc_skb(34 + hw->extra_tx_headroom); if (!skb) return NULL; skb_reserve(skb, hw->extra_tx_headroom); action_frame = (void *)skb_put(skb, 34); memset(action_frame, 0, 34); memcpy(action_frame->sa, sa, ETH_ALEN); memcpy(action_frame->da, rtlefuse->dev_addr, ETH_ALEN); memcpy(action_frame->bssid, bssid, ETH_ALEN); action_frame->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); action_frame->u.action.category = WLAN_CATEGORY_BACK; action_frame->u.action.u.delba.action_code = WLAN_ACTION_DELBA; params = (u16)(1 << 11); /* bit 11 initiator */ params |= (u16)(tid << 12); /* bit 15:12 TID number */ action_frame->u.action.u.delba.params = cpu_to_le16(params); action_frame->u.action.u.delba.reason_code = cpu_to_le16(WLAN_REASON_QSTA_TIMEOUT); return skb; } /********************************************************* * * IOT functions * *********************************************************/ static bool rtl_chk_vendor_ouisub(struct ieee80211_hw *hw, struct octet_string vendor_ie) { struct rtl_priv *rtlpriv = rtl_priv(hw); bool matched = false; static u8 athcap_1[] = { 0x00, 0x03, 0x7F }; static u8 athcap_2[] = { 0x00, 0x13, 0x74 }; static u8 broadcap_1[] = { 0x00, 0x10, 0x18 }; static u8 broadcap_2[] = { 0x00, 0x0a, 0xf7 }; static u8 broadcap_3[] = { 0x00, 0x05, 0xb5 }; static u8 racap[] = { 0x00, 0x0c, 0x43 }; static u8 ciscocap[] = { 0x00, 0x40, 0x96 }; static u8 marvcap[] = { 0x00, 0x50, 0x43 }; if (memcmp(vendor_ie.octet, athcap_1, 3) == 0 || memcmp(vendor_ie.octet, athcap_2, 3) == 0) { rtlpriv->mac80211.vendor = PEER_ATH; matched = true; } else if (memcmp(vendor_ie.octet, broadcap_1, 3) == 0 || memcmp(vendor_ie.octet, broadcap_2, 3) == 0 || memcmp(vendor_ie.octet, broadcap_3, 3) == 0) { rtlpriv->mac80211.vendor = PEER_BROAD; matched = true; } else if (memcmp(vendor_ie.octet, racap, 3) == 0) { rtlpriv->mac80211.vendor = PEER_RAL; matched = true; } else if (memcmp(vendor_ie.octet, ciscocap, 3) == 0) { rtlpriv->mac80211.vendor = PEER_CISCO; matched = true; } else if (memcmp(vendor_ie.octet, marvcap, 3) == 0) { rtlpriv->mac80211.vendor = PEER_MARV; matched = true; } return matched; } bool rtl_find_221_ie(struct ieee80211_hw *hw, u8 *data, unsigned int len) { struct ieee80211_mgmt *mgmt = (void *)data; struct octet_string vendor_ie; u8 *pos, *end; pos = (u8 *)mgmt->u.beacon.variable; end = data + len; while (pos < end) { if (pos[0] == 221) { vendor_ie.length = pos[1]; vendor_ie.octet = &pos[2]; if (rtl_chk_vendor_ouisub(hw, vendor_ie)) return true; } if (pos + 2 + pos[1] > end) return false; pos += 2 + pos[1]; } return false; } void rtl_recognize_peer(struct ieee80211_hw *hw, u8 *data, unsigned int len) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct ieee80211_hdr *hdr = (void *)data; u32 vendor = PEER_UNKNOWN; static u8 ap3_1[3] = { 0x00, 0x14, 0xbf }; static u8 ap3_2[3] = { 0x00, 0x1a, 0x70 }; static u8 ap3_3[3] = { 0x00, 0x1d, 0x7e }; static u8 ap4_1[3] = { 0x00, 0x90, 0xcc }; static u8 ap4_2[3] = { 0x00, 0x0e, 0x2e }; static u8 ap4_3[3] = { 0x00, 0x18, 0x02 }; static u8 ap4_4[3] = { 0x00, 0x17, 0x3f }; static u8 ap4_5[3] = { 0x00, 0x1c, 0xdf }; static u8 ap5_1[3] = { 0x00, 0x1c, 0xf0 }; static u8 ap5_2[3] = { 0x00, 0x21, 0x91 }; static u8 ap5_3[3] = { 0x00, 0x24, 0x01 }; static u8 ap5_4[3] = { 0x00, 0x15, 0xe9 }; static u8 ap5_5[3] = { 0x00, 0x17, 0x9A }; static u8 ap5_6[3] = { 0x00, 0x18, 0xE7 }; static u8 ap6_1[3] = { 0x00, 0x17, 0x94 }; static u8 ap7_1[3] = { 0x00, 0x14, 0xa4 }; if (mac->opmode != NL80211_IFTYPE_STATION) return; if (mac->link_state == MAC80211_NOLINK) { mac->vendor = PEER_UNKNOWN; return; } if (mac->cnt_after_linked > 2) return; /* check if this really is a beacon */ if (!ieee80211_is_beacon(hdr->frame_control)) return; /* min. beacon length + FCS_LEN */ if (len <= 40 + FCS_LEN) return; /* and only beacons from the associated BSSID, please */ if (compare_ether_addr(hdr->addr3, rtlpriv->mac80211.bssid)) return; if (rtl_find_221_ie(hw, data, len)) { vendor = mac->vendor; } if ((memcmp(mac->bssid, ap5_1, 3) == 0) || (memcmp(mac->bssid, ap5_2, 3) == 0) || (memcmp(mac->bssid, ap5_3, 3) == 0) || (memcmp(mac->bssid, ap5_4, 3) == 0) || (memcmp(mac->bssid, ap5_5, 3) == 0) || (memcmp(mac->bssid, ap5_6, 3) == 0) || vendor == PEER_ATH) { vendor = PEER_ATH; RT_TRACE(COMP_MAC80211, DBG_LOUD, ("=>ath find\n")); } else if ((memcmp(mac->bssid, ap4_4, 3) == 0) || (memcmp(mac->bssid, ap4_5, 3) == 0) || (memcmp(mac->bssid, ap4_1, 3) == 0) || (memcmp(mac->bssid, ap4_2, 3) == 0) || (memcmp(mac->bssid, ap4_3, 3) == 0) || vendor == PEER_RAL) { RT_TRACE(COMP_MAC80211, DBG_LOUD, ("=>ral findn\n")); vendor = PEER_RAL; } else if (memcmp(mac->bssid, ap6_1, 3) == 0 || vendor == PEER_CISCO) { vendor = PEER_CISCO; RT_TRACE(COMP_MAC80211, DBG_LOUD, ("=>cisco find\n")); } else if ((memcmp(mac->bssid, ap3_1, 3) == 0) || (memcmp(mac->bssid, ap3_2, 3) == 0) || (memcmp(mac->bssid, ap3_3, 3) == 0) || vendor == PEER_BROAD) { RT_TRACE(COMP_MAC80211, DBG_LOUD, ("=>broad find\n")); vendor = PEER_BROAD; } else if (memcmp(mac->bssid, ap7_1, 3) == 0 || vendor == PEER_MARV) { vendor = PEER_MARV; RT_TRACE(COMP_MAC80211, DBG_LOUD, ("=>marv find\n")); } mac->vendor = vendor; } /********************************************************* * * sysfs functions * *********************************************************/ static ssize_t rtl_show_debug_level(struct device *d, struct device_attribute *attr, char *buf) { struct ieee80211_hw *hw = dev_get_drvdata(d); struct rtl_priv *rtlpriv = rtl_priv(hw); return sprintf(buf, "0x%08X\n", rtlpriv->dbg.global_debuglevel); } static ssize_t rtl_store_debug_level(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ieee80211_hw *hw = dev_get_drvdata(d); struct rtl_priv *rtlpriv = rtl_priv(hw); unsigned long val; int ret; ret = strict_strtoul(buf, 0, &val); if (ret) { printk(KERN_DEBUG "%s is not in hex or decimal form.\n", buf); } else { rtlpriv->dbg.global_debuglevel = val; printk(KERN_DEBUG "debuglevel:%x\n", rtlpriv->dbg.global_debuglevel); } return strnlen(buf, count); } static DEVICE_ATTR(debug_level, S_IWUSR | S_IRUGO, rtl_show_debug_level, rtl_store_debug_level); static struct attribute *rtl_sysfs_entries[] = { &dev_attr_debug_level.attr, NULL }; /* * "name" is folder name witch will be * put in device directory like : * sys/devices/pci0000:00/0000:00:1c.4/ * 0000:06:00.0/rtl_sysfs */ struct attribute_group rtl_attribute_group = { .name = "rtlsysfs", .attrs = rtl_sysfs_entries, }; #ifdef VIF_TODO /********************************************************* * * vif functions * *********************************************************/ static inline struct ieee80211_vif * rtl_get_vif(struct rtl_vif_info *vif_priv) { return container_of((void *)vif_priv, struct ieee80211_vif, drv_priv); } /* Protected by ar->mutex or RCU */ struct ieee80211_vif *rtl_get_main_vif(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_vif_info *cvif; list_for_each_entry_rcu(cvif, &rtlpriv->vif_priv.vif_list, list) { if (cvif->active) return rtl_get_vif(cvif); } return NULL; } static inline bool is_main_vif(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { bool ret; rcu_read_lock(); ret = (rtl_get_main_vif(hw) == vif); rcu_read_unlock(); return ret; } bool rtl_set_vif_info(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct rtl_vif_info *vif_info = (void *) vif->drv_priv; struct rtl_priv *rtlpriv = rtl_priv(hw); int vif_id = -1; if (rtlpriv->vif_priv.vifs >= MAX_VIRTUAL_MAC) { RT_TRACE(COMP_ERR, DBG_WARNING, ("vif number can not bigger than %d, now vifs is:%d\n", MAX_VIRTUAL_MAC, rtlpriv->vif_priv.vifs)); return false; } rcu_read_lock(); vif_id = bitmap_find_free_region(&rtlpriv->vif_priv.vif_bitmap, MAX_VIRTUAL_MAC, 0); RT_TRACE(COMP_MAC80211, DBG_DMESG, ("%s vid_id:%d\n", __func__, vif_id)); if (vif_id < 0) { rcu_read_unlock(); return false; } BUG_ON(rtlpriv->vif_priv.vif[vif_id].id != vif_id); vif_info->active = true; vif_info->id = vif_id; vif_info->enable_beacon = false; rtlpriv->vif_priv.vifs++; if (rtlpriv->vif_priv.vifs > 1) { rtlpriv->psc.b_inactiveps = false; rtlpriv->psc.b_swctrl_lps = false; rtlpriv->psc.b_fwctrl_lps = false; } list_add_tail_rcu(&vif_info->list, &rtlpriv->vif_priv.vif_list); rcu_assign_pointer(rtlpriv->vif_priv.vif[vif_id].vif, vif); RT_TRACE(COMP_MAC80211, DBG_DMESG, ("vifaddress:%p %p %p\n", rtlpriv->vif_priv.vif[vif_id].vif, vif, rtl_get_main_vif(hw))); rcu_read_unlock(); return true; } #endif MODULE_AUTHOR("lizhaoming "); MODULE_AUTHOR("Realtek WlanFAE "); MODULE_AUTHOR("Larry Finger "); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Realtek 802.11n PCI wireless core"); struct rtl_global_var global_var = {}; static int __init rtl_core_module_init(void) { if (rtl_rate_control_register()) printk(KERN_DEBUG "rtl: Unable to register rtl_rc," "use default RC !!\n"); /* add proc for debug */ rtl_proc_add_topdir(); /* init some global vars */ INIT_LIST_HEAD(&global_var.glb_priv_list); spin_lock_init(&global_var.glb_list_lock); return 0; } static void __exit rtl_core_module_exit(void) { /*RC*/ rtl_rate_control_unregister(); /* add proc for debug */ rtl_proc_remove_topdir(); } module_init(rtl_core_module_init); module_exit(rtl_core_module_exit);