/* === S Y N F I G ========================================================= */ /*! \file warp.cpp ** \brief Implementation of the "Warp" layer ** ** $Id$ ** ** \legal ** Copyright (c) 2002-2005 Robert B. Quattlebaum Jr., Adrian Bentley ** Copyright (c) 2007, 2008 Chris Moore ** Copyright (c) 2011 Carlos López ** ** This package is free software; you can redistribute it and/or ** modify it under the terms of the GNU General Public License as ** published by the Free Software Foundation; either version 2 of ** the License, or (at your option) any later version. ** ** This package is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ** General Public License for more details. ** \endlegal ** ** === N O T E S =========================================================== ** ** ========================================================================= */ /* === H E A D E R S ======================================================= */ #ifdef USING_PCH # include "pch.h" #else #ifdef HAVE_CONFIG_H # include #endif #include "warp.h" #include #include #include #include #include #include #include #include #include #include #endif /* === M A C R O S ========================================================= */ /* === G L O B A L S ======================================================= */ SYNFIG_LAYER_INIT(Warp); SYNFIG_LAYER_SET_NAME(Warp,"warp"); SYNFIG_LAYER_SET_LOCAL_NAME(Warp,N_("Warp")); SYNFIG_LAYER_SET_CATEGORY(Warp,N_("Distortions")); SYNFIG_LAYER_SET_VERSION(Warp,"0.1"); SYNFIG_LAYER_SET_CVS_ID(Warp,"$Id$"); /* === P R O C E D U R E S ================================================= */ /* === M E T H O D S ======================================================= */ /* === E N T R Y P O I N T ================================================= */ Warp::Warp(): src_tl (-2,2), src_br (2,-2), dest_tl (-1.8,2.1), dest_tr (1.8,2.1), dest_bl (-2.2,-2), dest_br (2.2,-2), clip (true) { sync(); horizon=4; Layer::Vocab voc(get_param_vocab()); Layer::fill_static(voc); } Warp::~Warp() { } inline Point Warp::transform_forward(const Point& p)const { return Point( (inv_matrix[0][0]*p[0] + inv_matrix[0][1]*p[1] + inv_matrix[0][2])/(inv_matrix[2][0]*p[0] + inv_matrix[2][1]*p[1] + inv_matrix[2][2]), (inv_matrix[1][0]*p[0] + inv_matrix[1][1]*p[1] + inv_matrix[1][2])/(inv_matrix[2][0]*p[0] + inv_matrix[2][1]*p[1] + inv_matrix[2][2]) ); } inline Point Warp::transform_backward(const Point& p)const { return Point( (matrix[0][0]*p[0] + matrix[0][1]*p[1] + matrix[0][2])/(matrix[2][0]*p[0] + matrix[2][1]*p[1] + matrix[2][2]), (matrix[1][0]*p[0] + matrix[1][1]*p[1] + matrix[1][2])/(matrix[2][0]*p[0] + matrix[2][1]*p[1] + matrix[2][2]) ); } inline Real Warp::transform_forward_z(const Point& p)const { return inv_matrix[2][0]*p[0] + inv_matrix[2][1]*p[1] + inv_matrix[2][2]; } inline Real Warp::transform_backward_z(const Point& p)const { return matrix[2][0]*p[0] + matrix[2][1]*p[1] + matrix[2][2]; } /* #define transform_forward(p) Point( \ cache_a*p[0] + cache_b*p[1] + cache_c*p[0]*p[1] + cache_d, \ cache_e*p[0] + cache_f*p[1] + cache_i*p[0]*p[1] + cache_j ) #define transform_backward(p) Point( \ cache_a*p[0] + cache_b*p[1] + cache_c*p[0]*p[1] + cache_d, \ cache_e*p[0] + cache_f*p[1] + cache_i*p[0]*p[1] + cache_j ) */ #define triangle_area(a,b,c) (0.5*(-b[0]*a[1]+c[0]*a[1]+a[0]*b[1]-c[0]*b[1]-a[0]*c[1]+b[0]*c[1])) #define quad_area(a,b,c,d) (triangle_area(a,b,c)+triangle_area(a,c,d)) Real mat3_determinant(Real matrix[3][3]) { Real ret; ret = (matrix[0][0] * (matrix[1][1] * matrix[2][2] - matrix[1][2] * matrix[2][1])); ret -= (matrix[1][0] * (matrix[0][1] * matrix[2][2] - matrix[0][2] * matrix[2][1])); ret += (matrix[2][0] * (matrix[0][1] * matrix[1][2] - matrix[0][2] * matrix[1][1])); return ret; } void mat3_invert(Real in[3][3], Real out[3][3]) { Real det(mat3_determinant(in)); if (det == 0.0) return; det = 1.0 / det; out[0][0] = (in[1][1] * in[2][2] - in[1][2] * in[2][1]) * det; out[1][0] = - (in[1][0] * in[2][2] - in[1][2] * in[2][0]) * det; out[2][0] = (in[1][0] * in[2][1] - in[1][1] * in[2][0]) * det; out[0][1] = - (in[0][1] * in[2][2] - in[0][2] * in[2][1]) * det; out[1][1] = (in[0][0] * in[2][2] - in[0][2] * in[2][0]) * det; out[2][1] = - (in[0][0] * in[2][1] - in[0][1] * in[2][0]) * det; out[0][2] = (in[0][1] * in[1][2] - in[0][2] * in[1][1]) * det; out[1][2] = - (in[0][0] * in[1][2] - in[0][2] * in[1][0]) * det; out[2][2] = (in[0][0] * in[1][1] - in[0][1] * in[1][0]) * det; } void Warp::sync() { /* cache_a=(-dest_tl[0]+dest_tr[0])/(src_br[1]-src_tl[1]); cache_b=(-dest_tl[0]+dest_bl[0])/(src_br[0]-src_tl[0]); cache_c=(dest_tl[0]-dest_tr[0]+dest_br[0]-dest_bl[0])/((src_br[1]-src_tl[1])*(src_br[0]-src_tl[0])); cache_d=dest_tl[0]; cache_e=(-dest_tl[1]+dest_tr[1])/(src_br[0]-src_tl[0]); cache_f=(-dest_tl[1]+dest_bl[1])/(src_br[1]-src_tl[1]); cache_i=(dest_tl[1]-dest_tr[1]+dest_br[1]-dest_bl[1])/((src_br[1]-src_tl[1])*(src_br[0]-src_tl[0])); cache_j=dest_tl[1]; */ /* matrix[2][0]=(dest_tl[0]-dest_tr[0]+dest_br[0]-dest_bl[0])/((src_br[1]-src_tl[1])*(src_br[0]-src_tl[0])); matrix[2][1]=(dest_tl[1]-dest_tr[1]+dest_br[1]-dest_bl[1])/((src_br[1]-src_tl[1])*(src_br[0]-src_tl[0])); matrix[2][2]=quad_area(dest_tl,dest_tr,dest_br,dest_bl)/((src_br[1]-src_tl[1])*(src_br[0]-src_tl[0])); matrix[0][0]=-(-dest_tl[1]+dest_tr[1])/(src_br[0]-src_tl[0]); matrix[0][1]=-(-dest_tl[1]+dest_bl[1])/(src_br[1]-src_tl[1]); matrix[1][0]=-(-dest_tl[0]+dest_tr[0])/(src_br[1]-src_tl[1]); matrix[1][1]=-(-dest_tl[0]+dest_bl[0])/(src_br[0]-src_tl[0]); matrix[0][2]=matrix[0][0]*dest_tl[0] + matrix[0][1]*dest_tl[1]; matrix[1][2]=matrix[1][0]*dest_tl[0] + matrix[1][1]*dest_tl[1]; */ #define matrix tmp Real tmp[3][3]; const Real& x1(min(src_br[0],src_tl[0])); const Real& y1(min(src_br[1],src_tl[1])); const Real& x2(max(src_br[0],src_tl[0])); const Real& y2(max(src_br[1],src_tl[1])); Real tx1(dest_bl[0]); Real ty1(dest_bl[1]); Real tx2(dest_br[0]); Real ty2(dest_br[1]); Real tx3(dest_tl[0]); Real ty3(dest_tl[1]); Real tx4(dest_tr[0]); Real ty4(dest_tr[1]); if(src_br[0]src_tl[1]) swap(tx3,tx1),swap(ty3,ty1),swap(tx4,tx2),swap(ty4,ty2); Real scalex; Real scaley; scalex = scaley = 1.0; if ((x2 - x1) > 0) scalex = 1.0 / (Real) (x2 - x1); if ((y2 - y1) > 0) scaley = 1.0 / (Real) (y2 - y1); /* Determine the perspective transform that maps from * the unit cube to the transformed coordinates */ { Real dx1, dx2, dx3, dy1, dy2, dy3; dx1 = tx2 - tx4; dx2 = tx3 - tx4; dx3 = tx1 - tx2 + tx4 - tx3; dy1 = ty2 - ty4; dy2 = ty3 - ty4; dy3 = ty1 - ty2 + ty4 - ty3; /* Is the mapping affine? */ if ((dx3 == 0.0) && (dy3 == 0.0)) { matrix[0][0] = tx2 - tx1; matrix[0][1] = tx4 - tx2; matrix[0][2] = tx1; matrix[1][0] = ty2 - ty1; matrix[1][1] = ty4 - ty2; matrix[1][2] = ty1; matrix[2][0] = 0.0; matrix[2][1] = 0.0; } else { Real det1, det2; det1 = dx3 * dy2 - dy3 * dx2; det2 = dx1 * dy2 - dy1 * dx2; if (det1 == 0.0 && det2 == 0.0) matrix[2][0] = 1.0; else matrix[2][0] = det1 / det2; det1 = dx1 * dy3 - dy1 * dx3; if (det1 == 0.0 && det2 == 0.0) matrix[2][1] = 1.0; else matrix[2][1] = det1 / det2; matrix[0][0] = tx2 - tx1 + matrix[2][0] * tx2; matrix[0][1] = tx3 - tx1 + matrix[2][1] * tx3; matrix[0][2] = tx1; matrix[1][0] = ty2 - ty1 + matrix[2][0] * ty2; matrix[1][1] = ty3 - ty1 + matrix[2][1] * ty3; matrix[1][2] = ty1; } matrix[2][2] = 1.0; } #undef matrix Real scaletrans[3][3]={ { scalex, 0, -x1*scalex }, { 0, scaley, -y1*scaley }, { 0, 0, 1 } }; Real t1,t2,t3; for (int i = 0; i < 3; i++) { t1 = tmp[i][0]; t2 = tmp[i][1]; t3 = tmp[i][2]; for (int j = 0; j < 3; j++) { matrix[i][j] = t1 * scaletrans[0][j]; matrix[i][j] += t2 * scaletrans[1][j]; matrix[i][j] += t3 * scaletrans[2][j]; } } mat3_invert(matrix, inv_matrix); /* gimp_matrix3_identity (result); gimp_matrix3_translate (result, -x1, -y1); gimp_matrix3_scale (result, scalex, scaley); gimp_matrix3_mult (&matrix, result); */ } bool Warp::set_param(const String & param, const ValueBase &value) { IMPORT_PLUS(src_tl,sync()); IMPORT_PLUS(src_br,sync()); IMPORT_PLUS(dest_tl,sync()); IMPORT_PLUS(dest_tr,sync()); IMPORT_PLUS(dest_bl,sync()); IMPORT_PLUS(dest_br,sync()); IMPORT(clip); IMPORT(horizon); return false; } ValueBase Warp::get_param(const String ¶m)const { EXPORT(src_tl); EXPORT(src_br); EXPORT(dest_tl); EXPORT(dest_tr); EXPORT(dest_bl); EXPORT(dest_br); EXPORT(clip); EXPORT(horizon); EXPORT_NAME(); EXPORT_VERSION(); return ValueBase(); } Layer::Vocab Warp::get_param_vocab()const { Layer::Vocab ret; ret.push_back(ParamDesc("src_tl") .set_local_name(_("Source TL")) .set_box("src_br") .set_description(_("Top Left corner of the source to warp")) ); ret.push_back(ParamDesc("src_br") .set_local_name(_("Source BR")) .set_description(_("Bottom Right corner of the source to warp")) ); ret.push_back(ParamDesc("dest_tl") .set_local_name(_("Dest TL")) .set_connect("dest_tr") .set_description(_("Top Left corner of the destination")) ); ret.push_back(ParamDesc("dest_tr") .set_local_name(_("Dest TR")) .set_connect("dest_br") .set_description(_("Top Right corner of the destination")) ); ret.push_back(ParamDesc("dest_br") .set_local_name(_("Dest BR")) .set_connect("dest_bl") .set_description(_("Bottom Right corner of the destination")) ); ret.push_back(ParamDesc("dest_bl") .set_local_name(_("Dest BL")) .set_connect("dest_tl") .set_description(_("Bottom Left corner of the destination")) ); ret.push_back(ParamDesc("clip") .set_local_name(_("Clip")) ); ret.push_back(ParamDesc("horizon") .set_local_name(_("Horizon")) .set_description(_("Height that determines the horizon in perspectives")) ); return ret; } class Warp_Trans : public Transform { etl::handle layer; public: Warp_Trans(const Warp* x):Transform(x->get_guid()),layer(x) { } synfig::Vector perform(const synfig::Vector& x)const { return layer->transform_backward(x); //Point pos(x-layer->origin); //return Point(layer->cos_val*pos[0]-layer->sin_val*pos[1],layer->sin_val*pos[0]+layer->cos_val*pos[1])+layer->origin; } synfig::Vector unperform(const synfig::Vector& x)const { return layer->transform_forward(x); //Point pos(x-layer->origin); //return Point(layer->cos_val*pos[0]+layer->sin_val*pos[1],-layer->sin_val*pos[0]+layer->cos_val*pos[1])+layer->origin; } }; etl::handle Warp::get_transform()const { return new Warp_Trans(this); } synfig::Layer::Handle Warp::hit_check(synfig::Context context, const synfig::Point &p)const { Point newpos(transform_forward(p)); if(clip) { Rect rect(src_tl,src_br); if(!rect.is_inside(newpos)) return 0; } return context.hit_check(newpos); } Color Warp::get_color(Context context, const Point &p)const { Point newpos(transform_forward(p)); if(clip) { Rect rect(src_tl,src_br); if(!rect.is_inside(newpos)) return Color::alpha(); } const float z(transform_backward_z(newpos)); if(z>0 && zamount_complete(0,10000)) return false; Point tl(renddesc.get_tl()); Point br(renddesc.get_br()); Rect bounding_rect; Rect render_rect(tl,br); Rect clip_rect(Rect::full_plane()); Rect dest_rect(dest_tl,dest_br); dest_rect.expand(dest_tr).expand(dest_bl); Real zoom_factor(1.0); // Quick exclusion clip, if necessary if(clip && !intersect(render_rect,dest_rect)) { surface->set_wh(renddesc.get_w(),renddesc.get_h()); surface->clear(); return true; } { Rect other(render_rect); if(clip) other&=dest_rect; Point min(other.get_min()); Point max(other.get_max()); bool init_point_set=false; // Point trans_point[4]; Point p; // Real trans_z[4]; Real z,minz(10000000000000.0f),maxz(0); //! \todo checking the 4 corners for 0<=z0 && z0 && z0 && z0 && zset_wh(renddesc.get_w(),renddesc.get_h()); surface->clear(); return true; } zoom_factor=(1+(maxz-minz)); } #ifdef ACCEL_WARP_IS_BROKEN return Layer::accelerated_render(context,surface,quality,renddesc, cb); #else /*swap(tl[1],br[1]); bounding_rect .expand(transform_forward(tl)) .expand(transform_forward(br)) ; swap(tl[1],br[1]);*/ //synfig::warning("given window: [%f,%f]-[%f,%f] %dx%d",tl[0],tl[1],br[0],br[1],renddesc.get_w(),renddesc.get_h()); //synfig::warning("Projected: [%f,%f]-[%f,%f]",bounding_rect.get_min()[0],bounding_rect.get_min()[1],bounding_rect.get_max()[0],bounding_rect.get_max()[1]); // If we are clipping, then go ahead and clip to the // source rectangle if(clip) clip_rect&=Rect(src_tl,src_br); // Bound ourselves to the bounding rectangle of // what is under us clip_rect&=context.get_full_bounding_rect();//.expand_x(abs(zoom_factor/pw)).expand_y(abs(zoom_factor/ph)); bounding_rect&=clip_rect; Point min_point(bounding_rect.get_min()); Point max_point(bounding_rect.get_max()); // we're going to divide by the difference of these pairs soon; // if they're the same, we'll be dividing by zero, and we don't // want to do that! // \todo what should we do in this case? if (min_point[0] == max_point[0]) max_point[0] += 0.001; if (min_point[1] == max_point[1]) max_point[1] += 0.001; if(tl[0]>br[0]) { tl[0]=max_point[0]; br[0]=min_point[0]; } else { br[0]=max_point[0]; tl[0]=min_point[0]; } if(tl[1]>br[1]) { tl[1]=max_point[1]; br[1]=min_point[1]; } else { br[1]=max_point[1]; tl[1]=min_point[1]; } const int tmp_d(max(renddesc.get_w(),renddesc.get_h())); Real src_pw=(tmp_d*zoom_factor)/(br[0]-tl[0]); Real src_ph=(tmp_d*zoom_factor)/(br[1]-tl[1]); RendDesc desc(renddesc); desc.clear_flags(); //desc.set_flags(RendDesc::PX_ASPECT); desc.set_tl(tl); desc.set_br(br); desc.set_wh(ceil_to_int(src_pw*(br[0]-tl[0])),ceil_to_int(src_ph*(br[1]-tl[1]))); //synfig::warning("surface to render: [%f,%f]-[%f,%f] %dx%d",desc.get_tl()[0],desc.get_tl()[1],desc.get_br()[0],desc.get_br()[1],desc.get_w(),desc.get_h()); if(desc.get_w()==0 && desc.get_h()==0) { surface->set_wh(renddesc.get_w(),renddesc.get_h()); surface->clear(); return true; } // Recalculate the pixel widths for the src renddesc src_pw=(desc.get_w())/(desc.get_br()[0]-desc.get_tl()[0]); src_ph=(desc.get_h())/(desc.get_br()[1]-desc.get_tl()[1]); Surface source; source.set_wh(desc.get_w(),desc.get_h()); if(!context.accelerated_render(&source,quality,desc,&stageone)) return false; surface->set_wh(renddesc.get_w(),renddesc.get_h()); surface->clear(); Surface::pen pen(surface->begin()); if(quality<=4) { // CUBIC int x,y; float u,v; Point point,tmp; for(y=0,point[1]=renddesc.get_tl()[1];yget_h();y++,pen.inc_y(),pen.dec_x(x),point[1]+=1.0/ph) { for(x=0,point[0]=renddesc.get_tl()[0];xget_w();x++,pen.inc_x(),point[0]+=1.0/pw) { tmp=transform_forward(point); const float z(transform_backward_z(tmp)); if(!clip_rect.is_inside(tmp) || !(z>0 && z=source.get_w() || v>=source.get_h() || isnan(u) || isnan(v)) (*surface)[y][x]=context.get_color(tmp); else (*surface)[y][x]=source.cubic_sample(u,v); } if((y&31)==0 && cb) { if(!stagetwo.amount_complete(y,surface->get_h())) return false; } } } else if(quality<=6) { // INTERPOLATION_LINEAR int x,y; float u,v; Point point,tmp; for(y=0,point[1]=renddesc.get_tl()[1];yget_h();y++,pen.inc_y(),pen.dec_x(x),point[1]+=1.0/ph) { for(x=0,point[0]=renddesc.get_tl()[0];xget_w();x++,pen.inc_x(),point[0]+=1.0/pw) { tmp=transform_forward(point); const float z(transform_backward_z(tmp)); if(!clip_rect.is_inside(tmp) || !(z>0 && z=source.get_w() || v>=source.get_h() || isnan(u) || isnan(v)) (*surface)[y][x]=context.get_color(tmp); else (*surface)[y][x]=source.linear_sample(u,v); } if((y&31)==0 && cb) { if(!stagetwo.amount_complete(y,surface->get_h())) return false; } } } else { // NEAREST_NEIGHBOR int x,y; float u,v; Point point,tmp; for(y=0,point[1]=renddesc.get_tl()[1];yget_h();y++,pen.inc_y(),pen.dec_x(x),point[1]+=1.0/ph) { for(x=0,point[0]=renddesc.get_tl()[0];xget_w();x++,pen.inc_x(),point[0]+=1.0/pw) { tmp=transform_forward(point); const float z(transform_backward_z(tmp)); if(!clip_rect.is_inside(tmp) || !(z>0 && z=source.get_w() || v>=source.get_h() || isnan(u) || isnan(v)) (*surface)[y][x]=context.get_color(tmp); else //pen.set_value(source[v][u]); (*surface)[y][x]=source[floor_to_int(v)][floor_to_int(u)]; } if((y&31)==0 && cb) { if(!stagetwo.amount_complete(y,surface->get_h())) return false; } } } #endif if(cb && !cb->amount_complete(10000,10000)) return false; return true; } synfig::Rect Warp::get_bounding_rect()const { return Rect::full_plane(); } synfig::Rect Warp::get_full_bounding_rect(Context context)const { // return Rect::full_plane(); Rect under(context.get_full_bounding_rect()); if(clip) { under&=Rect(src_tl,src_br); } return get_transform()->perform(under); /* Rect under(context.get_full_bounding_rect()); Rect ret(Rect::zero()); if(under.area()==HUGE_VAL) return Rect::full_plane(); ret.expand( transform_backward( under.get_min() ) ); ret.expand( transform_backward( under.get_max() ) ); ret.expand( transform_backward( Vector( under.get_min()[0], under.get_max()[1] ) ) ); ret.expand( transform_backward( Vector( under.get_max()[0], under.get_min()[1] ) ) ); if(ret.area()==HUGE_VAL) return Rect::full_plane(); return ret; */ }