/* === S Y N F I G ========================================================= */ /*! \file circle.cpp ** \brief Implementation of the "Circle" layer ** ** $Id$ ** ** \legal ** Copyright (c) 2002-2005 Robert B. Quattlebaum Jr., Adrian Bentley ** Copyright (c) 2008 Chris Moore ** Copyright (c) 2011 Carlos López ** ** This package is free software; you can redistribute it and/or ** modify it under the terms of the GNU General Public License as ** published by the Free Software Foundation; either version 2 of ** the License, or (at your option) any later version. ** ** This package is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ** General Public License for more details. ** \endlegal */ /* ========================================================================= */ /* === H E A D E R S ======================================================= */ #ifdef USING_PCH # include "pch.h" #else #ifdef HAVE_CONFIG_H # include #endif #include "circle.h" #include #include #include #include #include #include #include #include #include #endif using namespace synfig; using namespace std; using namespace etl; /* -- G L O B A L S --------------------------------------------------------- */ SYNFIG_LAYER_INIT(Circle); SYNFIG_LAYER_SET_NAME(Circle,"circle"); SYNFIG_LAYER_SET_LOCAL_NAME(Circle,N_("Circle")); SYNFIG_LAYER_SET_CATEGORY(Circle,N_("Geometry")); SYNFIG_LAYER_SET_VERSION(Circle,"0.1"); SYNFIG_LAYER_SET_CVS_ID(Circle,"$Id$"); /* -- F U N C T I O N S ----------------------------------------------------- */ Circle::Circle(): Layer_Composite (1.0,Color::BLEND_COMPOSITE), color (Color::black()), origin (0,0), radius (1), feather (0), invert (false), falloff (FALLOFF_INTERPOLATION_LINEAR) { constructcache(); Layer::Vocab voc(get_param_vocab()); Layer::fill_static(voc); } bool Circle::ImportParameters(const String ¶m, const ValueBase &value) { IMPORT_PLUS(color, { if (color.get_a() == 0) { if (converted_blend_) { set_blend_method(Color::BLEND_ALPHA_OVER); color.set_a(1); } else transparent_color_ = true; } }); IMPORT(radius); IMPORT_PLUS(feather, if(feather<0)feather=0;); IMPORT(invert); IMPORT(origin); IMPORT(falloff); IMPORT_AS(origin,"pos"); return Layer_Composite::set_param(param,value); } bool Circle::set_param(const String ¶m, const ValueBase &value) { if(ImportParameters(param,value)) { constructcache(); return true; } return false; } ValueBase Circle::get_param(const String ¶m)const { EXPORT(color); EXPORT(radius); EXPORT(feather); EXPORT(invert); EXPORT(origin); EXPORT(falloff); EXPORT_NAME(); EXPORT_VERSION(); return Layer_Composite::get_param(param); } Layer::Vocab Circle::get_param_vocab()const { Layer::Vocab ret(Layer_Composite::get_param_vocab()); ret.push_back(ParamDesc("color") .set_local_name(_("Color")) .set_description(_("Fill color of the layer")) ); ret.push_back(ParamDesc("radius") .set_local_name(_("Radius")) .set_origin("origin") .set_description(_("Radius of the circle")) .set_is_distance() ); ret.push_back(ParamDesc("feather") .set_local_name(_("Feather")) .set_is_distance() .set_description(_("Amount of feather of the circle")) ); ret.push_back(ParamDesc("origin") .set_local_name(_("Origin")) .set_description(_("Center of the circle")) ); ret.push_back(ParamDesc("invert") .set_local_name(_("Invert")) .set_description(_("Invert the circle")) ); ret.push_back(ParamDesc("falloff") .set_local_name(_("Falloff")) .set_description(_("Determines the falloff function for the feather")) .set_hint("enum") .add_enum_value(FALLOFF_INTERPOLATION_LINEAR,"linear",_("Linear")) .add_enum_value(FALLOFF_SQUARED,"squared",_("Squared")) .add_enum_value(FALLOFF_SQRT,"sqrt",_("Square Root")) .add_enum_value(FALLOFF_SIGMOND,"sigmond",_("Sigmond")) .add_enum_value(FALLOFF_COSINE,"cosine",_("Cosine")) ); return ret; } synfig::Layer::Handle Circle::hit_check(synfig::Context context, const synfig::Point &point)const { Point temp=origin-point; if(get_amount()==0) return context.hit_check(point); bool in_circle(temp.mag_squared() <= radius*radius); if(invert) { in_circle=!in_circle; if(in_circle && get_amount()-(feather/radius)<=0.1 && get_blend_method()!=Color::BLEND_STRAIGHT) in_circle=false; } else { if(get_amount()-(feather/radius)<=0.0) in_circle=false; } if(in_circle) { synfig::Layer::Handle tmp; if(get_blend_method()==Color::BLEND_BEHIND && (tmp=context.hit_check(point))) return tmp; if(Color::is_onto(get_blend_method()) && !(tmp=context.hit_check(point))) return 0; return const_cast(this); } return context.hit_check(point); } //falloff functions Real Circle::SqdFalloff(const Circle::CircleDataCache &c, const Real &mag_sqd) { //squared proportional falloff return (c.outer_radius_sqd - mag_sqd) / c.diff_sqd; } Real Circle::InvSqdFalloff(const Circle::CircleDataCache &c, const Real &mag_sqd) { //squared proportional falloff return 1.0 - (c.outer_radius_sqd - mag_sqd) / c.diff_sqd; } Real Circle::SqrtFalloff(const Circle::CircleDataCache &c, const Real &mag_sqd) { //linear distance falloff Real ret = ( c.outer_radius - sqrt(mag_sqd) ) / c.double_feather; //then take the square root of it ret = sqrt(ret); return ret; } Real Circle::InvSqrtFalloff(const Circle::CircleDataCache &c, const Real &mag_sqd) { //linear distance falloff Real ret = ( c.outer_radius - sqrt(mag_sqd) ) / c.double_feather; //then take the square root of it ret = 1.0 - sqrt(ret); return ret; } Real Circle::LinearFalloff(const Circle::CircleDataCache &c, const Real &mag_sqd) { //linear distance falloff return ( c.outer_radius - sqrt(mag_sqd) ) / c.double_feather; } Real Circle::InvLinearFalloff(const Circle::CircleDataCache &c, const Real &mag_sqd) { return 1.0 - ( c.outer_radius - sqrt(mag_sqd) ) / c.double_feather; //linear distance falloff } Real Circle::SigmondFalloff(const Circle::CircleDataCache &c, const Real &mag_sqd) { //linear distance falloff Real ret = ( c.outer_radius - sqrt(mag_sqd) ) / c.double_feather; // inverse exponential of the linear falloff (asymptotes at 0 and 1) // \frac{1.0}{ 1 + e^{- \( a*10-5 \)}} ret = 1.0 / (1 + exp(-(ret*10-5)) ); return ret; } Real Circle::InvSigmondFalloff(const Circle::CircleDataCache &c, const Real &mag_sqd) { //linear distance falloff Real ret = ( c.outer_radius - sqrt(mag_sqd) ) / c.double_feather; // inverse exponential of the linear falloff (asymptotes at 0 and 1) // \frac{1.0}{ 1 + e^{- \( a*10-5 \)}} ret = 1.0 - 1.0 / (1 + exp(-(ret*10-5)) ); return ret; } Real Circle::CosineFalloff(const Circle::CircleDataCache &c, const Real &mag_sqd) { //Cosine distance falloff return (1.0f-cos((( c.outer_radius - sqrt(mag_sqd) ) / c.double_feather)*3.1415927))*0.5f; } Real Circle::InvCosineFalloff(const Circle::CircleDataCache &c, const Real &mag_sqd) { return 1.0f-(1.0f-cos((( c.outer_radius - sqrt(mag_sqd) ) / c.double_feather)*3.1415927))*0.5f; //Cosine distance falloff } void Circle::constructcache() { cache.inner_radius = radius - feather; if(cache.inner_radius < 0) cache.inner_radius = 0; cache.outer_radius = radius + feather; cache.inner_radius_sqd = cache.inner_radius > 0 ? (radius-feather)*(radius-feather) : 0; cache.outer_radius_sqd = (radius+feather)*(radius+feather); cache.diff_sqd = feather*feather*4.0; cache.double_feather = feather*2.0; falloff_func = GetFalloffFunc(); } Circle::FALLOFF_FUNC *Circle::GetFalloffFunc()const { switch(falloff) { case FALLOFF_SQUARED: return invert?InvSqdFalloff:SqdFalloff; case FALLOFF_SQRT: return invert?InvSqrtFalloff:SqrtFalloff; case FALLOFF_INTERPOLATION_LINEAR: return invert?InvLinearFalloff:LinearFalloff; case FALLOFF_SIGMOND: return invert?InvSigmondFalloff:SigmondFalloff; case FALLOFF_COSINE: default: return invert?InvCosineFalloff:CosineFalloff; } } Color Circle::get_color(Context context, const Point &point)const { if(is_disabled() || (radius==0 && invert==false && !feather)) return context.get_color(point); Point temp=origin-point; /*const Real inner_radius = radius-feather; const Real outer_radius = radius+feather; const Real inner_radius_sqd = inner_radius > 0 ? (radius-feather)*(radius-feather) : 0; const Real outer_radius_sqd = (radius+feather)*(radius+feather); const Real diff_radii_sqd = outer_radius_sqd - inner_radius_sqd; const Real double_feather = feather*2.0;*/ /*const Real &inner_radius = cache.inner_radius; const Real &outer_radius = cache.outer_radius;*/ const Real &inner_radius_sqd = cache.inner_radius_sqd; const Real &outer_radius_sqd = cache.outer_radius_sqd; /*const Real &diff_radii_sqd = cache.diff_radii_sqd; const Real &double_feather = cache.double_feather;*/ const Vector::value_type mag_squared = temp.mag_squared(); //Outside the circle, with feathering enabled if( mag_squared > outer_radius_sqd ) { // inverted -> outside == colored in if(invert) { if(get_amount() == 1 && get_blend_method() == Color::BLEND_STRAIGHT) return color; else return Color::blend(color,context.get_color(point),get_amount(),get_blend_method()); } else return Color::blend(Color::alpha(),context.get_color(point),get_amount(),get_blend_method()); } //inside the circle's solid area (with feathering) else if(mag_squared <= inner_radius_sqd) { // !invert -> solid area if(!invert) if(get_amount() == 1 && get_blend_method() == Color::BLEND_STRAIGHT) return color; else return Color::blend(color,context.get_color(point),get_amount(),get_blend_method()); else return Color::blend(Color::alpha(),context.get_color(point),get_amount(),get_blend_method()); } //If we get here, the pixel is within the feathering area, and is thus subject to falloff else { Color::value_type alpha; /*switch(falloff) { case FALLOFF_SQUARED: //squared proportional falloff alpha = (outer_radius_sqd - mag_squared) / diff_radii_sqd; break; case FALLOFF_SQRT: //linear distance falloff alpha = ( outer_radius - sqrt(mag_squared) ) / double_feather; //then take the square root of it alpha = sqrt(alpha); break; case FALLOFF_INTERPOLATION_LINEAR: //linear distance falloff alpha = ( outer_radius - sqrt(mag_squared) ) / double_feather; break; case FALLOFF_SIGMOND: default: //linear distance falloff alpha = ( outer_radius - sqrt(mag_squared) ) / double_feather; // inverse exponential of the linear falloff (asymptotes at 0 and 1) // \frac{1.0}{ 1 + e^{- \( a*10-5 \)}} alpha = 1.0 / (1 + exp(-(alpha*10-5)) ); break; } //If we're inverted, we need to invert the falloff value if(invert) alpha=1.0-alpha;*/ alpha = falloff_func(cache,mag_squared); return Color::blend(color*alpha,context.get_color(point),get_amount(),get_blend_method()); } } Color NormalBlend(Color a, Color b, float amount) { return (b-a)*amount+a; } bool Circle::accelerated_render(Context context,Surface *surface,int quality, const RendDesc &renddesc, ProgressCallback *cb)const { // trivial case if(is_disabled() || (radius==0 && invert==false && !feather)) return context.accelerated_render(surface,quality, renddesc, cb); // Another trivial case if(invert && radius==0 && is_solid_color()) { surface->set_wh(renddesc.get_w(),renddesc.get_h()); surface->fill(color); if(cb && !cb->amount_complete(10000,10000)) return false; return true; } // Window Boundaries const Point tl(renddesc.get_tl()); const Point br(renddesc.get_br()); const int w(renddesc.get_w()); const int h(renddesc.get_h()); const Real x_neg = tl[0] > br[0] ? -1 : 1; const Real y_neg = tl[1] > br[1] ? -1 : 1; // Width and Height of a pixel const Real pw = (br[0] - tl[0]) / w; const Real ph = (br[1] - tl[1]) / h; // Increasing the feather amount by the size of // a pixel will create an anti-aliased appearance // don't render feathering at all when quality is 10 const Real newfeather = (quality == 10) ? 0 : feather + (abs(ph)+abs(pw))/4.0; //int u,v; int left = (int) floor( (origin[0] - x_neg*(radius+newfeather) - tl[0]) / pw ); int right = (int) ceil( (origin[0] + x_neg*(radius+newfeather) - tl[0]) / pw ); int top = (int) floor( (origin[1] - y_neg*(radius+newfeather) - tl[1]) / ph ); int bottom = (int) ceil( (origin[1] + y_neg*(radius+newfeather) - tl[1]) / ph ); //clip the rectangle bounds if(left < 0) left = 0; if(top < 0) top = 0; if(right >= w) right = w-1; if(bottom >= h) bottom = h-1; const Real inner_radius = radius-newfeather>0 ? radius-newfeather : 0; const Real outer_radius = radius+newfeather; const Real inner_radius_sqd = inner_radius*inner_radius; const Real outer_radius_sqd = outer_radius*outer_radius; const Real diff_radii_sqd = 4*newfeather*std::max(newfeather,radius);//4.0*radius*newfeather; const Real double_feather = newfeather * 2.0; //Compile the temporary cache for the falloff calculations FALLOFF_FUNC *func = GetFalloffFunc(); const CircleDataCache cache = { inner_radius,outer_radius, inner_radius_sqd,outer_radius_sqd, diff_radii_sqd,double_feather }; //info("Circle: Initialized everything"); //let the rendering begin SuperCallback supercb(cb,0,9000,10000); //if it's a degenerate circle, do what we need to do, and then leave if(left >= right || top >= bottom) { if(invert) { if(get_amount() == 1 && get_blend_method() == Color::BLEND_STRAIGHT) { surface->set_wh(w,h); surface->fill(color); return true; }else { // Render what is behind us if(!context.accelerated_render(surface,quality,renddesc,&supercb)) { if(cb)cb->error(strprintf(__FILE__"%d: Accelerated Renderer Failure",__LINE__)); return false; } Surface::alpha_pen p(surface->begin(),get_amount(),_BlendFunc(get_blend_method())); p.set_value(color); p.put_block(h,w); return true; } }else { // Render what is behind us if(!context.accelerated_render(surface,quality,renddesc,&supercb)) { if(cb)cb->error(strprintf(__FILE__"%d: Accelerated Renderer Failure",__LINE__)); return false; } return true; } } if( (origin[0] - tl[0])*(origin[0] - tl[0]) + (origin[1] - tl[1])*(origin[1] - tl[1]) < inner_radius_sqd && (origin[0] - br[0])*(origin[0] - br[0]) + (origin[1] - br[1])*(origin[1] - br[1]) < inner_radius_sqd && (origin[0] - tl[0])*(origin[0] - tl[0]) + (origin[1] - br[1])*(origin[1] - br[1]) < inner_radius_sqd && (origin[0] - br[0])*(origin[0] - br[0]) + (origin[1] - tl[1])*(origin[1] - tl[1]) < inner_radius_sqd ) { if(invert) { // Render what is behind us if(!context.accelerated_render(surface,quality,renddesc,&supercb)) { if(cb)cb->error(strprintf(__FILE__"%d: Accelerated Renderer Failure",__LINE__)); return false; } }else { if(get_amount() == 1 && get_blend_method() == Color::BLEND_STRAIGHT) { surface->set_wh(w,h); surface->fill(color); return true; } } } //info("Circle: Non degenerate, rasterize %c", invert); //we start in the middle of the left-top pixel Real leftf = (left + 0.5)*pw + tl[0]; Real topf = (top + 0.5)*ph + tl[1]; //the looping variables Real x,y; int i,j; //Loop normally, since we are not inverted if(!invert) { // Render what is behind us if(!context.accelerated_render(surface,quality,renddesc,&supercb)) { if(cb)cb->error(strprintf(__FILE__"%d: Accelerated Renderer Failure",__LINE__)); return false; } //make topf and leftf relative to the center of the circle leftf -= origin[0]; topf -= origin[1]; j = top; y = topf; //Loop over the valid y-values in the bounding square for(;j <= bottom; j++, y += ph) { i = left; x = leftf; //for each y-value, Loop over the bounding x-values in the bounding square for(;i <= right; i++, x += pw) { //for each pixel, figure out the distance and blend Real r = x*x + y*y; //if in the inner circle then the full color shows through if(r <= inner_radius_sqd) { if(get_amount() == 1 && get_blend_method() == Color::BLEND_STRAIGHT) (*surface)[j][i]=color; else (*surface)[j][i]=Color::blend(color,(*surface)[j][i],get_amount(),get_blend_method()); } //if it's within the outer circle then it's in the feathering range else if(r <= outer_radius_sqd) { /*float myamount; switch(falloff) { case FALLOFF_SQUARED: myamount = (outer_radius_sqd - r) / diff_radii_sqd; break; case FALLOFF_SQRT: myamount = (outer_radius - sqrt(r)) / double_feather; myamount = sqrt(myamount); break; case FALLOFF_INTERPOLATION_LINEAR: myamount = (outer_radius - sqrt(r)) / double_feather; break; case FALLOFF_SIGMOND: default: myamount = (outer_radius - sqrt(r)) / double_feather; myamount = 1.0 / ( 1 + exp(-(myamount*10 - 5)) ); break; }*/ Real myamount = func(cache,r); //if(myamount<0.0)myamount=0.0; //if(myamount>1.0)myamount=1.0; myamount *= get_amount(); (*surface)[j][i] = Color::blend(color,(*surface)[j][i],myamount,get_blend_method()); } } } } else { Surface background; RendDesc desc(renddesc); desc.set_flags(0); int offset_x=0,offset_y=0; //fill the surface with the background color initially surface->set_wh(w,h); surface->fill(color); //then render the background to an alternate surface if(get_amount() == 1 && get_blend_method() == Color::BLEND_STRAIGHT) { offset_x = left; offset_y = top; //if there is no background showing through we are done if(right < left || bottom < top) return true; desc.set_subwindow(left,top,right-left+1,bottom-top+1); // Render what is behind us if(!context.accelerated_render(&background,quality,desc,&supercb)) { if(cb)cb->error(strprintf(__FILE__"%d: Accelerated Renderer Failure",__LINE__)); return false; } } else { left = 0; right = w-1; top = 0; bottom = h-1; leftf = /*0.5*pw +*/ tl[0]; topf = /*0.5*ph +*/ tl[1]; // Render what is behind us if(!context.accelerated_render(&background,quality,renddesc,&supercb)) { if(cb)cb->error(strprintf(__FILE__"%d: Accelerated Renderer Failure",__LINE__)); return false; } } topf -= origin[1]; leftf-= origin[0]; j = top; y = topf; for(;j <= bottom; j++, y+=ph) { i = left; x = leftf; for(;i <= right; i++, x+=pw) { Vector::value_type r = x*x + y*y; if(r < inner_radius_sqd) { (*surface)[j][i] = background[j-offset_y][i-offset_x]; } else if(r < outer_radius_sqd) { /*float amount; switch(falloff) { case FALLOFF_SQUARED: amount = (r - inner_radius_sqd) / diff_radii_sqd; break; case FALLOFF_INTERPOLATION_LINEAR: amount = (sqrt(r) - inner_radius) / double_feather; break; case FALLOFF_SQRT: amount = (outer_radius - sqrt(r)) / double_feather; amount = 1.0 - sqrt(amount); break; case FALLOFF_SIGMOND: default: amount = (outer_radius - sqrt(r)) / double_feather; amount = 1.0 - ( 1.0/( 1 + exp(-(amount*10-5)) ) ); break; }*/ Real amount = func(cache,r); if(amount<0.0)amount=0.0; if(amount>1.0)amount=1.0; amount*=get_amount(); (*surface)[j][i]=Color::blend(color,background[j-offset_y][i-offset_x],amount,get_blend_method()); }else if(get_amount() != 1 || get_blend_method() != Color::BLEND_STRAIGHT) { (*surface)[j][i]=Color::blend(color,background[j][i],get_amount(),get_blend_method()); } } } } // Mark our progress as finished if(cb && !cb->amount_complete(10000,10000)) return false; return true; } Rect Circle::get_bounding_rect()const { if(invert) return Rect::full_plane(); Rect bounds( origin[0]+(radius+feather), origin[1]+(radius+feather), origin[0]-(radius+feather), origin[1]-(radius+feather) ); return bounds; } Rect Circle::get_full_bounding_rect(Context context)const { if(invert) { if(is_solid_color() && color.get_a()==0) { Rect bounds( origin[0]+(radius+feather), origin[1]+(radius+feather), origin[0]-(radius+feather), origin[1]-(radius+feather) ); return bounds & context.get_full_bounding_rect(); } return Rect::full_plane(); } return Layer_Composite::get_full_bounding_rect(context); }