/************************************************************************ The code in this file is heavily inspired by the TASS17 and GUST86 theories found on ftp://ftp.imcce.fr/pub/ephem/satel I (Johannes Gajdosik) have just taken the Fortran code and data obtained from above and rearranged it into this piece of software. I can neigther allow nor forbid the above theories. The copyright notice below covers just my work, that is the compilation of the data obtained from above into the software supplied in this file. Copyright (c) 2005 Johannes Gajdosik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************/ #include "elliptic_to_rectangular.h" #include #ifndef M_PI #define M_PI 3.14159265358979323846 #endif static void EllipticToRectangular(const double a,const double n, const double elem[6],const double dt,double xyz[]) { const double L = fmod(elem[1]+n*dt,2.0*M_PI); /* solve Keplers equation x = L - elem[2]*sin(x) + elem[3]*cos(x) not by trivially iterating x_0 = L x_{j+1} = L - elem[2]*sin(x_j) + elem[3]*cos(x_j) but instead by Newton approximation: 0 = f(x) = x - L - elem[2]*sin(x) + elem[3]*cos(x) f'(x) = 1 - elem[2]*cos(x) - elem[3]*sin(x) x_0 = L or whatever, perhaps first step of trivial iteration x_{j+1} = x_j - f(x_j)/f'(x_j) */ double Le = L - elem[2]*sin(L) + elem[3]*cos(L); for (;;) { const double cLe = cos(Le); const double sLe = sin(Le); /* for excenticity < 1 we have denominator > 0 */ const double dLe = (L - Le + elem[2]*sLe - elem[3]*cLe) / (1.0 - elem[2]*cLe - elem[3]*sLe); Le += dLe; if (fabs(dLe) <= 1e-14) break; /* L1: <1e-12 */ } { const double cLe = cos(Le); const double sLe = sin(Le); const double dlf = -elem[2]*sLe + elem[3]*cLe; const double phi = sqrt(1.0 - elem[2]*elem[2] - elem[3]*elem[3]); const double psi = 1.0 / (1.0 + phi); const double x1 = a * (cLe - elem[2] - psi*dlf*elem[3]); const double y1 = a * (sLe - elem[3] + psi*dlf*elem[2]); const double elem_4q = elem[4] * elem[4]; const double elem_5q = elem[5] * elem[5]; const double dwho = 2.0 * sqrt(1.0 - elem_4q - elem_5q); const double rtp = 1.0 - elem_5q - elem_5q; const double rtq = 1.0 - elem_4q - elem_4q; const double rdg = 2.0 * elem[5] * elem[4]; xyz[0] = x1 * rtp + y1 * rdg; xyz[1] = x1 * rdg + y1 * rtq; xyz[2] = (-x1 * elem[5] + y1 * elem[4]) * dwho; /* const double rsam1 = -elem[2]*cLe - elem[3]*sLe; const double h = a*n / (1.0 + rsam1); const double vx1 = h * (-sLe - psi*rsam1*elem[3]); const double vy1 = h * ( cLe + psi*rsam1*elem[2]); xyz[3] = vx1 * rtp + vy1 * rdg; xyz[4] = vx1 * rdg + vy1 * rtq; xyz[5] = (-vx1 * elem[5] + vy1 * elem[4]) * dwho; */ } } void EllipticToRectangularN(double mu,const double elem[6],double dt, double xyz[]) { const double n = elem[0]; #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 /* linux math.h declares cbrt: */ const double a = cbrt(mu/(n*n)); #else const double a = exp(log(mu/(n*n))/3.0); #endif EllipticToRectangular(a,n,elem,dt,xyz); } void EllipticToRectangularA(double mu,const double elem[6],double dt, double xyz[]) { const double a = elem[0]; const double n = sqrt(mu/(a*a*a)); EllipticToRectangular(a,n,elem,dt,xyz); }