/* This program is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA. Copyright (C) 2000 Liam Girdwood */ #include #ifndef M_PI #define M_PI 3.14159265358979323846 #endif /* puts a large angle in the correct range 0 - 360 degrees */ double range_degrees(double d) { d = fmod( d, 360.); if(d<0.) d += 360.; return d; } /* puts a large angle in the correct range 0 - 2PI radians */ double range_radians (double r) { r = fmod( r, 2.*M_PI ); if (r<0.) r += 2.*M_PI; return r; } #define TERMS 63 /* compute only every tenths of day: */ #define LN_NUTATION_EPOCH_THRESHOLD 0.1 /* Nutation is a period oscillation of the Earths rotational axis around it's mean position.*/ /* Contains Nutation in longitude, obliquity and ecliptic obliquity. Angles are expressed in degrees. */ struct ln_nutation { double longitude; /*!< Nutation in longitude */ double obliquity; /*!< Nutation in obliquity */ double ecliptic; /*!< Obliquity of the ecliptic */ }; struct nutation_arguments { double D; double M; double MM; double F; double O; }; struct nutation_coefficients { double longitude1; double longitude2; double obliquity1; double obliquity2; }; /* arguments and coefficients taken from table 21A on page 133 */ static const struct nutation_arguments arguments[TERMS] = { {0.0, 0.0, 0.0, 0.0, 1.0}, {-2.0, 0.0, 0.0, 2.0, 2.0}, {0.0, 0.0, 0.0, 2.0, 2.0}, {0.0, 0.0, 0.0, 0.0, 2.0}, {0.0, 1.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 1.0, 0.0, 0.0}, {-2.0, 1.0, 0.0, 2.0, 2.0}, {0.0, 0.0, 0.0, 2.0, 1.0}, {0.0, 0.0, 1.0, 2.0, 2.0}, {-2.0, -1.0, 0.0, 2.0, 2.0}, {-2.0, 0.0, 1.0, 0.0, 0.0}, {-2.0, 0.0, 0.0, 2.0, 1.0}, {0.0, 0.0, -1.0, 2.0, 2.0}, {2.0, 0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 1.0, 0.0, 1.0}, {2.0, 0.0, -1.0, 2.0, 2.0}, {0.0, 0.0, -1.0, 0.0, 1.0}, {0.0, 0.0, 1.0, 2.0, 1.0}, {-2.0, 0.0, 2.0, 0.0, 0.0}, {0.0, 0.0, -2.0, 2.0, 1.0}, {2.0, 0.0, 0.0, 2.0, 2.0}, {0.0, 0.0, 2.0, 2.0, 2.0}, {0.0, 0.0, 2.0, 0.0, 0.0}, {-2.0, 0.0, 1.0, 2.0, 2.0}, {0.0, 0.0, 0.0, 2.0, 0.0}, {-2.0, 0.0, 0.0, 2.0, 0.0}, {0.0, 0.0, -1.0, 2.0, 1.0}, {0.0, 2.0, 0.0, 0.0, 0.0}, {2.0, 0.0, -1.0, 0.0, 1.0}, {-2.0, 2.0, 0.0, 2.0, 2.0}, {0.0, 1.0, 0.0, 0.0, 1.0}, {-2.0, 0.0, 1.0, 0.0, 1.0}, {0.0, -1.0, 0.0, 0.0, 1.0}, {0.0, 0.0, 2.0, -2.0, 0.0}, {2.0, 0.0, -1.0, 2.0, 1.0}, {2.0, 0.0, 1.0, 2.0, 2.0}, {0.0, 1.0, 0.0, 2.0, 2.0}, {-2.0, 1.0, 1.0, 0.0, 0.0}, {0.0, -1.0, 0.0, 2.0, 2.0}, {2.0, 0.0, 0.0, 2.0, 1.0}, {2.0, 0.0, 1.0, 0.0, 0.0}, {-2.0, 0.0, 2.0, 2.0, 2.0}, {-2.0, 0.0, 1.0, 2.0, 1.0}, {2.0, 0.0, -2.0, 0.0, 1.0}, {2.0, 0.0, 0.0, 0.0, 1.0}, {0.0, -1.0, 1.0, 0.0, 0.0}, {-2.0, -1.0, 0.0, 2.0, 1.0}, {-2.0, 0.0, 0.0, 0.0, 1.0}, {0.0, 0.0, 2.0, 2.0, 1.0}, {-2.0, 0.0, 2.0, 0.0, 1.0}, {-2.0, 1.0, 0.0, 2.0, 1.0}, {0.0, 0.0, 1.0, -2.0, 0.0}, {-1.0, 0.0, 1.0, 0.0, 0.0}, {-2.0, 1.0, 0.0, 0.0, 0.0}, {1.0, 0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 1.0, 2.0, 0.0}, {0.0, 0.0, -2.0, 2.0, 2.0}, {-1.0, -1.0, 1.0, 0.0, 0.0}, {0.0, 1.0, 1.0, 0.0, 0.0}, {0.0, -1.0, 1.0, 2.0, 2.0}, {2.0, -1.0, -1.0, 2.0, 2.0}, {0.0, 0.0, 3.0, 2.0, 2.0}, {2.0, -1.0, 0.0, 2.0, 2.0}}; static const struct nutation_coefficients coefficients[TERMS] = { {-171996.0, -174.2, 92025.0,8.9}, {-13187.0, -1.6, 5736.0, -3.1}, {-2274.0, 0.2, 977.0, -0.5}, {2062.0, 0.2, -895.0, 0.5}, {1426.0, -3.4, 54.0, -0.1}, {712.0, 0.1, -7.0, 0.0}, {-517.0, 1.2, 224.0, -0.6}, {-386.0, -0.4, 200.0, 0.0}, {-301.0, 0.0, 129.0, -0.1}, {217.0, -0.5, -95.0, 0.3}, {-158.0, 0.0, 0.0, 0.0}, {129.0, 0.1, -70.0, 0.0}, {123.0, 0.0, -53.0, 0.0}, {63.0, 0.0, 0.0, 0.0}, {63.0, 1.0, -33.0, 0.0}, {-59.0, 0.0, 26.0, 0.0}, {-58.0, -0.1, 32.0, 0.0}, {-51.0, 0.0, 27.0, 0.0}, {48.0, 0.0, 0.0, 0.0}, {46.0, 0.0, -24.0, 0.0}, {-38.0, 0.0, 16.0, 0.0}, {-31.0, 0.0, 13.0, 0.0}, {29.0, 0.0, 0.0, 0.0}, {29.0, 0.0, -12.0, 0.0}, {26.0, 0.0, 0.0, 0.0}, {-22.0, 0.0, 0.0, 0.0}, {21.0, 0.0, -10.0, 0.0}, {17.0, -0.1, 0.0, 0.0}, {16.0, 0.0, -8.0, 0.0}, {-16.0, 0.1, 7.0, 0.0}, {-15.0, 0.0, 9.0, 0.0}, {-13.0, 0.0, 7.0, 0.0}, {-12.0, 0.0, 6.0, 0.0}, {11.0, 0.0, 0.0, 0.0}, {-10.0, 0.0, 5.0, 0.0}, {-8.0, 0.0, 3.0, 0.0}, {7.0, 0.0, -3.0, 0.0}, {-7.0, 0.0, 0.0, 0.0}, {-7.0, 0.0, 3.0, 0.0}, {-7.0, 0.0, 3.0, 0.0}, {6.0, 0.0, 0.0, 0.0}, {6.0, 0.0, -3.0, 0.0}, {6.0, 0.0, -3.0, 0.0}, {-6.0, 0.0, 3.0, 0.0}, {-6.0, 0.0, 3.0, 0.0}, {5.0, 0.0, 0.0, 0.0}, {-5.0, 0.0, 3.0, 0.0}, {-5.0, 0.0, 3.0, 0.0}, {-5.0, 0.0, 3.0, 0.0}, {4.0, 0.0, 0.0, 0.0}, {4.0, 0.0, 0.0, 0.0}, {4.0, 0.0, 0.0, 0.0}, {-4.0, 0.0, 0.0, 0.0}, {-4.0, 0.0, 0.0, 0.0}, {-4.0, 0.0, 0.0, 0.0}, {3.0, 0.0, 0.0, 0.0}, {-3.0, 0.0, 0.0, 0.0}, {-3.0, 0.0, 0.0, 0.0}, {-3.0, 0.0, 0.0, 0.0}, {-3.0, 0.0, 0.0, 0.0}, {-3.0, 0.0, 0.0, 0.0}, {-3.0, 0.0, 0.0, 0.0}, {-3.0, 0.0, 0.0, 0.0}}; /* cache values */ static double c_JD = 0.0, c_longitude = 0.0, c_obliquity = 0.0, c_ecliptic = 0.0; /* Calculate nutation of longitude and obliquity in degrees from Julian Ephemeris Day * params : JD Julian Day, nutation Pointer to store nutation. * Meeus, Astr. Alg. (1st ed., 1994), Chapter 21 pg 131-134 Using Table 21A */ /* GZ: Changed: ecliptic obliquity used to be constant J2000.0. * If you don't compute this, you may as well forget about nutation! */ void get_nutation (double JD, struct ln_nutation * nutation) { double D,M,MM,F,O,T; double coeff_sine, coeff_cos; int i; /* should we bother recalculating nutation */ if (fabs(JD - c_JD) > LN_NUTATION_EPOCH_THRESHOLD) { /* set the new epoch */ c_JD = JD; /* set ecliptic. GZ: This is constant only, J2000.0. WRONG! */ /* c_ecliptic = 23.0 + 26.0 / 60.0 + 27.407 / 3600.0; */ /* calc T */ T = (JD - 2451545.0)/36525; /* GZotti: we don't need those. * / T2 = T * T; T3 = T2 * T; / * calculate D,M,M',F and Omega * / D = 297.85036 + 445267.111480 * T - 0.0019142 * T2 + T3 / 189474.0; M = 357.52772 + 35999.050340 * T - 0.0001603 * T2 - T3 / 300000.0; MM = 134.96298 + 477198.867398 * T + 0.0086972 * T2 + T3 / 56250.0; F = 93.2719100 + 483202.017538 * T - 0.0036825 * T2 + T3 / 327270.0; O = 125.04452 - 1934.136261 * T + 0.0020708 * T2 + T3 / 450000.0; / * GZotti: Laskar's formula, only valid for J2000+/-10000 years! */ if (fabs(T)<100) { double U=T/100.0; c_ecliptic=((((((((((2.45*U+ 5.79)*U +27.87)*U +7.12)*U -39.05)*U -249.67)*U -51.38)*U +1999.25)*U -1.55)*U)-4680.93)*U +21.448; } else /* Use IAU formula. This might be more stable in faraway times, but is less accurate in any case for |U|<1. */ { c_ecliptic=((0.001813*T-0.00059)*T-46.8150)*T+21.448; } c_ecliptic/=60.0; c_ecliptic+=26.0; c_ecliptic/=60.0; c_ecliptic+=23.0; /* GZotti: I prefer Horner's Scheme and its better numerical accuracy. */ D = ((T / 189474.0 - 0.0019142)*T + 445267.111480)*T + 297.85036; M = ((T / 300000.0 - 0.0001603)*T + 35999.050340)*T + 357.52772; MM= ((T / 56250.0 + 0.0086972)*T + 477198.867398)*T + 134.96298; F = ((T / 327270.0 - 0.0036825)*T + 483202.017538)*T + 93.27191; O = ((T / 450000.0 + 0.0020708)*T - 1934.136261)*T + 125.04452; /* convert to radians */ D *= M_PI/180.; M *= M_PI/180.; MM *= M_PI/180.; F *= M_PI/180.; O *= M_PI/180.; /* calc sum of terms in table 21A */ for (i=0; i< TERMS; i++) { /* calc coefficients of sine and cosine */ coeff_sine = coefficients[i].longitude1 + (coefficients[i].longitude2 * T); coeff_cos = coefficients[i].obliquity1 + (coefficients[i].obliquity2 * T); /* sum the arguments */ if (arguments[i].D != 0) { c_longitude += coeff_sine * (sin (arguments[i].D * D)); c_obliquity += coeff_cos * (cos (arguments[i].D * D)); } if (arguments[i].M != 0) { c_longitude += coeff_sine * (sin (arguments[i].M * M)); c_obliquity += coeff_cos * (cos (arguments[i].M * M)); } if (arguments[i].MM != 0) { c_longitude += coeff_sine * (sin (arguments[i].MM * MM)); c_obliquity += coeff_cos * (cos (arguments[i].MM * MM)); } if (arguments[i].F != 0) { c_longitude += coeff_sine * (sin (arguments[i].F * F)); c_obliquity += coeff_cos * (cos (arguments[i].F * F)); } if (arguments[i].O != 0) { c_longitude += coeff_sine * (sin (arguments[i].O * O)); c_obliquity += coeff_cos * (cos (arguments[i].O * O)); } } /* change to degrees */ c_longitude /= 36000000.; c_obliquity /= 36000000.; /* GZ: mean ecliptic should be still available! Addition must be done where needed. */ /* c_ecliptic += c_obliquity; */ } /* return results */ nutation->longitude = c_longitude; nutation->obliquity = c_obliquity; nutation->ecliptic = c_ecliptic; } /* Calculate the mean sidereal time at the meridian of Greenwich of a given date. * returns apparent sidereal time (degree). * Formula 11.1, 11.4 pg 83 */ double get_mean_sidereal_time (double JD) { double sidereal; double T; T = (JD - 2451545.0) / 36525.0; /* calc mean angle */ sidereal = 280.46061837 + (360.98564736629 * (JD - 2451545.0)) + (0.000387933 * T * T) - (T * T * T / 38710000.0); /* add a convenient multiple of 360 degrees */ sidereal = range_degrees (sidereal); return sidereal; } /* Calculate the apparent sidereal time at the meridian of Greenwich of a given date. * returns apparent sidereal time (degree). * Formula 11.1, 11.4 pg 83 */ double get_apparent_sidereal_time (double JD) { double correction, sidereal; struct ln_nutation nutation; /* get the mean sidereal time */ sidereal = get_mean_sidereal_time (JD); /* add corrections for nutation in longitude and for the true obliquity of the ecliptic */ get_nutation (JD, &nutation); /* GZ: This was the only place where this was used. I added the summation here. */ correction = (nutation.longitude * cos ((nutation.ecliptic+nutation.obliquity)*M_PI/180.)); sidereal += correction; return (sidereal); } double get_mean_ecliptical_obliquity(double JDE) { struct ln_nutation nutation; get_nutation(JDE, &nutation); return nutation.ecliptic; } double get_nutation_longitude(double JDE) { struct ln_nutation nutation; get_nutation(JDE, &nutation); return nutation.longitude; }