/* Copyright (c) 2015 Arduino LLC. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #if defined(ARDUINO_ARCH_SAMD) #include #include #define usToTicks(_us) ((clockCyclesPerMicrosecond() * _us) / 16) // converts microseconds to tick #define ticksToUs(_ticks) (((unsigned) _ticks * 16) / clockCyclesPerMicrosecond()) // converts from ticks back to microseconds #define TRIM_DURATION 5 // compensation ticks to trim adjust for digitalWrite delays static servo_t servos[MAX_SERVOS]; // static array of servo structures uint8_t ServoCount = 0; // the total number of attached servos static volatile int8_t currentServoIndex[_Nbr_16timers]; // index for the servo being pulsed for each timer (or -1 if refresh interval) // convenience macros #define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo #define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer #define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel #define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel #define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo #define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo #define WAIT_TC16_REGS_SYNC(x) while(x->COUNT16.STATUS.bit.SYNCBUSY); /************ static functions common to all instances ***********************/ void Servo_Handler(timer16_Sequence_t timer, Tc *pTc, uint8_t channel, uint8_t intFlag); #if defined (_useTimer1) void HANDLER_FOR_TIMER1(void) { Servo_Handler(_timer1, TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, INTFLAG_BIT_FOR_TIMER_1); } #endif #if defined (_useTimer2) void HANDLER_FOR_TIMER2(void) { Servo_Handler(_timer2, TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, INTFLAG_BIT_FOR_TIMER_2); } #endif void Servo_Handler(timer16_Sequence_t timer, Tc *tc, uint8_t channel, uint8_t intFlag) { if (currentServoIndex[timer] < 0) { tc->COUNT16.COUNT.reg = (uint16_t) 0; WAIT_TC16_REGS_SYNC(tc) } else { if (SERVO_INDEX(timer, currentServoIndex[timer]) < ServoCount && SERVO(timer, currentServoIndex[timer]).Pin.isActive == true) { digitalWrite(SERVO(timer, currentServoIndex[timer]).Pin.nbr, LOW); // pulse this channel low if activated } } // Select the next servo controlled by this timer currentServoIndex[timer]++; if (SERVO_INDEX(timer, currentServoIndex[timer]) < ServoCount && currentServoIndex[timer] < SERVOS_PER_TIMER) { if (SERVO(timer, currentServoIndex[timer]).Pin.isActive == true) { // check if activated digitalWrite(SERVO(timer, currentServoIndex[timer]).Pin.nbr, HIGH); // it's an active channel so pulse it high } // Get the counter value uint16_t tcCounterValue = tc->COUNT16.COUNT.reg; WAIT_TC16_REGS_SYNC(tc) tc->COUNT16.CC[channel].reg = (uint16_t) (tcCounterValue + SERVO(timer, currentServoIndex[timer]).ticks); WAIT_TC16_REGS_SYNC(tc) } else { // finished all channels so wait for the refresh period to expire before starting over // Get the counter value uint16_t tcCounterValue = tc->COUNT16.COUNT.reg; WAIT_TC16_REGS_SYNC(tc) if (tcCounterValue + 4UL < usToTicks(REFRESH_INTERVAL)) { // allow a few ticks to ensure the next OCR1A not missed tc->COUNT16.CC[channel].reg = (uint16_t) usToTicks(REFRESH_INTERVAL); } else { tc->COUNT16.CC[channel].reg = (uint16_t) (tcCounterValue + 4UL); // at least REFRESH_INTERVAL has elapsed } WAIT_TC16_REGS_SYNC(tc) currentServoIndex[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel } // Clear the interrupt tc->COUNT16.INTFLAG.reg = intFlag; } static inline void resetTC (Tc* TCx) { // Disable TCx TCx->COUNT16.CTRLA.reg &= ~TC_CTRLA_ENABLE; WAIT_TC16_REGS_SYNC(TCx) // Reset TCx TCx->COUNT16.CTRLA.reg = TC_CTRLA_SWRST; WAIT_TC16_REGS_SYNC(TCx) while (TCx->COUNT16.CTRLA.bit.SWRST); } static void _initISR(Tc *tc, uint8_t channel, uint32_t id, IRQn_Type irqn, uint8_t gcmForTimer, uint8_t intEnableBit) { // Enable GCLK for timer 1 (timer counter input clock) GCLK->CLKCTRL.reg = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID(gcmForTimer)); while (GCLK->STATUS.bit.SYNCBUSY); // Reset the timer // TODO this is not the right thing to do if more than one channel per timer is used by the Servo library resetTC(tc); // Set timer counter mode to 16 bits tc->COUNT16.CTRLA.reg |= TC_CTRLA_MODE_COUNT16; // Set timer counter mode as normal PWM tc->COUNT16.CTRLA.reg |= TC_CTRLA_WAVEGEN_NPWM; // Set the prescaler factor to GCLK_TC/16. At nominal 48MHz GCLK_TC this is 3000 ticks per millisecond tc->COUNT16.CTRLA.reg |= TC_CTRLA_PRESCALER_DIV16; // Count up tc->COUNT16.CTRLBCLR.bit.DIR = 1; WAIT_TC16_REGS_SYNC(tc) // First interrupt request after 1 ms tc->COUNT16.CC[channel].reg = (uint16_t) usToTicks(1000UL); WAIT_TC16_REGS_SYNC(tc) // Configure interrupt request // TODO this should be changed if more than one channel per timer is used by the Servo library NVIC_DisableIRQ(irqn); NVIC_ClearPendingIRQ(irqn); NVIC_SetPriority(irqn, 0); NVIC_EnableIRQ(irqn); // Enable the match channel interrupt request tc->COUNT16.INTENSET.reg = intEnableBit; // Enable the timer and start it tc->COUNT16.CTRLA.reg |= TC_CTRLA_ENABLE; WAIT_TC16_REGS_SYNC(tc) } static void initISR(timer16_Sequence_t timer) { #if defined (_useTimer1) if (timer == _timer1) _initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1, GCM_FOR_TIMER_1, INTENSET_BIT_FOR_TIMER_1); #endif #if defined (_useTimer2) if (timer == _timer2) _initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2, GCM_FOR_TIMER_2, INTENSET_BIT_FOR_TIMER_2); #endif } static void finISR(timer16_Sequence_t timer) { #if defined (_useTimer1) // Disable the match channel interrupt request TC_FOR_TIMER1->COUNT16.INTENCLR.reg = INTENCLR_BIT_FOR_TIMER_1; #endif #if defined (_useTimer2) // Disable the match channel interrupt request TC_FOR_TIMER2->COUNT16.INTENCLR.reg = INTENCLR_BIT_FOR_TIMER_2; #endif } static boolean isTimerActive(timer16_Sequence_t timer) { // returns true if any servo is active on this timer for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) { if(SERVO(timer,channel).Pin.isActive == true) return true; } return false; } /****************** end of static functions ******************************/ Servo::Servo() { if (ServoCount < MAX_SERVOS) { this->servoIndex = ServoCount++; // assign a servo index to this instance servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values } else { this->servoIndex = INVALID_SERVO; // too many servos } } uint8_t Servo::attach(int pin) { return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH); } uint8_t Servo::attach(int pin, int min, int max) { timer16_Sequence_t timer; if (this->servoIndex < MAX_SERVOS) { pinMode(pin, OUTPUT); // set servo pin to output servos[this->servoIndex].Pin.nbr = pin; // todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128 this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS this->max = (MAX_PULSE_WIDTH - max)/4; // initialize the timer if it has not already been initialized timer = SERVO_INDEX_TO_TIMER(servoIndex); if (isTimerActive(timer) == false) { initISR(timer); } servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive } return this->servoIndex; } void Servo::detach() { timer16_Sequence_t timer; servos[this->servoIndex].Pin.isActive = false; timer = SERVO_INDEX_TO_TIMER(servoIndex); if(isTimerActive(timer) == false) { finISR(timer); } } void Servo::write(int value) { // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds) if (value < MIN_PULSE_WIDTH) { if (value < 0) value = 0; else if (value > 180) value = 180; value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX()); } writeMicroseconds(value); } void Servo::writeMicroseconds(int value) { // calculate and store the values for the given channel byte channel = this->servoIndex; if( (channel < MAX_SERVOS) ) // ensure channel is valid { if (value < SERVO_MIN()) // ensure pulse width is valid value = SERVO_MIN(); else if (value > SERVO_MAX()) value = SERVO_MAX(); value = value - TRIM_DURATION; value = usToTicks(value); // convert to ticks after compensating for interrupt overhead servos[channel].ticks = value; } } int Servo::read() // return the value as degrees { return map(readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180); } int Servo::readMicroseconds() { unsigned int pulsewidth; if (this->servoIndex != INVALID_SERVO) pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION; else pulsewidth = 0; return pulsewidth; } bool Servo::attached() { return servos[this->servoIndex].Pin.isActive; } #endif // ARDUINO_ARCH_SAMD