/* Arduino Sd2Card Library * Copyright (C) 2009 by William Greiman * * This file is part of the Arduino Sd2Card Library * * This Library is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This Library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with the Arduino Sd2Card Library. If not, see * . */ #define USE_SPI_LIB #include #include "Sd2Card.h" //------------------------------------------------------------------------------ #ifndef SOFTWARE_SPI #ifdef USE_SPI_LIB #ifndef SDCARD_SPI #define SDCARD_SPI SPI #endif #include static SPISettings settings; #endif // functions for hardware SPI /** Send a byte to the card */ static void spiSend(uint8_t b) { #ifndef USE_SPI_LIB SPDR = b; while (!(SPSR & (1 << SPIF))) ; #else SDCARD_SPI.transfer(b); #endif } /** Receive a byte from the card */ static uint8_t spiRec(void) { #ifndef USE_SPI_LIB spiSend(0XFF); return SPDR; #else return SDCARD_SPI.transfer(0xFF); #endif } #else // SOFTWARE_SPI //------------------------------------------------------------------------------ /** nop to tune soft SPI timing */ #define nop asm volatile ("nop\n\t") //------------------------------------------------------------------------------ /** Soft SPI receive */ uint8_t spiRec(void) { uint8_t data = 0; // no interrupts during byte receive - about 8 us cli(); // output pin high - like sending 0XFF fastDigitalWrite(SPI_MOSI_PIN, HIGH); for (uint8_t i = 0; i < 8; i++) { fastDigitalWrite(SPI_SCK_PIN, HIGH); // adjust so SCK is nice nop; nop; data <<= 1; if (fastDigitalRead(SPI_MISO_PIN)) data |= 1; fastDigitalWrite(SPI_SCK_PIN, LOW); } // enable interrupts sei(); return data; } //------------------------------------------------------------------------------ /** Soft SPI send */ void spiSend(uint8_t data) { // no interrupts during byte send - about 8 us cli(); for (uint8_t i = 0; i < 8; i++) { fastDigitalWrite(SPI_SCK_PIN, LOW); fastDigitalWrite(SPI_MOSI_PIN, data & 0X80); data <<= 1; fastDigitalWrite(SPI_SCK_PIN, HIGH); } // hold SCK high for a few ns nop; nop; nop; nop; fastDigitalWrite(SPI_SCK_PIN, LOW); // enable interrupts sei(); } #endif // SOFTWARE_SPI //------------------------------------------------------------------------------ // send command and return error code. Return zero for OK uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) { // end read if in partialBlockRead mode readEnd(); // select card chipSelectLow(); // wait up to 300 ms if busy waitNotBusy(300); // send command spiSend(cmd | 0x40); // send argument for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s); // send CRC uint8_t crc = 0XFF; if (cmd == CMD0) crc = 0X95; // correct crc for CMD0 with arg 0 if (cmd == CMD8) crc = 0X87; // correct crc for CMD8 with arg 0X1AA spiSend(crc); // wait for response for (uint8_t i = 0; ((status_ = spiRec()) & 0X80) && i != 0XFF; i++) ; return status_; } //------------------------------------------------------------------------------ /** * Determine the size of an SD flash memory card. * * \return The number of 512 byte data blocks in the card * or zero if an error occurs. */ uint32_t Sd2Card::cardSize(void) { csd_t csd; if (!readCSD(&csd)) return 0; if (csd.v1.csd_ver == 0) { uint8_t read_bl_len = csd.v1.read_bl_len; uint16_t c_size = (csd.v1.c_size_high << 10) | (csd.v1.c_size_mid << 2) | csd.v1.c_size_low; uint8_t c_size_mult = (csd.v1.c_size_mult_high << 1) | csd.v1.c_size_mult_low; return (uint32_t)(c_size + 1) << (c_size_mult + read_bl_len - 7); } else if (csd.v2.csd_ver == 1) { uint32_t c_size = ((uint32_t)csd.v2.c_size_high << 16) | (csd.v2.c_size_mid << 8) | csd.v2.c_size_low; return (c_size + 1) << 10; } else { error(SD_CARD_ERROR_BAD_CSD); return 0; } } //------------------------------------------------------------------------------ static uint8_t chip_select_asserted = 0; void Sd2Card::chipSelectHigh(void) { digitalWrite(chipSelectPin_, HIGH); #ifdef USE_SPI_LIB if (chip_select_asserted) { chip_select_asserted = 0; SDCARD_SPI.endTransaction(); } #endif } //------------------------------------------------------------------------------ void Sd2Card::chipSelectLow(void) { #ifdef USE_SPI_LIB if (!chip_select_asserted) { chip_select_asserted = 1; SDCARD_SPI.beginTransaction(settings); } #endif digitalWrite(chipSelectPin_, LOW); } //------------------------------------------------------------------------------ /** Erase a range of blocks. * * \param[in] firstBlock The address of the first block in the range. * \param[in] lastBlock The address of the last block in the range. * * \note This function requests the SD card to do a flash erase for a * range of blocks. The data on the card after an erase operation is * either 0 or 1, depends on the card vendor. The card must support * single block erase. * * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ uint8_t Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) { if (!eraseSingleBlockEnable()) { error(SD_CARD_ERROR_ERASE_SINGLE_BLOCK); goto fail; } if (type_ != SD_CARD_TYPE_SDHC) { firstBlock <<= 9; lastBlock <<= 9; } if (cardCommand(CMD32, firstBlock) || cardCommand(CMD33, lastBlock) || cardCommand(CMD38, 0)) { error(SD_CARD_ERROR_ERASE); goto fail; } if (!waitNotBusy(SD_ERASE_TIMEOUT)) { error(SD_CARD_ERROR_ERASE_TIMEOUT); goto fail; } chipSelectHigh(); return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** Determine if card supports single block erase. * * \return The value one, true, is returned if single block erase is supported. * The value zero, false, is returned if single block erase is not supported. */ uint8_t Sd2Card::eraseSingleBlockEnable(void) { csd_t csd; return readCSD(&csd) ? csd.v1.erase_blk_en : 0; } //------------------------------------------------------------------------------ /** * Initialize an SD flash memory card. * * \param[in] sckRateID SPI clock rate selector. See setSckRate(). * \param[in] chipSelectPin SD chip select pin number. * * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. The reason for failure * can be determined by calling errorCode() and errorData(). */ uint8_t Sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin) { errorCode_ = inBlock_ = partialBlockRead_ = type_ = 0; chipSelectPin_ = chipSelectPin; // 16-bit init start time allows over a minute uint16_t t0 = (uint16_t)millis(); uint32_t arg; // set pin modes pinMode(chipSelectPin_, OUTPUT); digitalWrite(chipSelectPin_, HIGH); #ifndef USE_SPI_LIB pinMode(SPI_MISO_PIN, INPUT); pinMode(SPI_MOSI_PIN, OUTPUT); pinMode(SPI_SCK_PIN, OUTPUT); #endif #ifndef SOFTWARE_SPI #ifndef USE_SPI_LIB // SS must be in output mode even it is not chip select pinMode(SS_PIN, OUTPUT); digitalWrite(SS_PIN, HIGH); // disable any SPI device using hardware SS pin // Enable SPI, Master, clock rate f_osc/128 SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR1) | (1 << SPR0); // clear double speed SPSR &= ~(1 << SPI2X); #else // USE_SPI_LIB SDCARD_SPI.begin(); settings = SPISettings(250000, MSBFIRST, SPI_MODE0); #endif // USE_SPI_LIB #endif // SOFTWARE_SPI // must supply min of 74 clock cycles with CS high. #ifdef USE_SPI_LIB SDCARD_SPI.beginTransaction(settings); #endif for (uint8_t i = 0; i < 10; i++) spiSend(0XFF); #ifdef USE_SPI_LIB SDCARD_SPI.endTransaction(); #endif chipSelectLow(); // command to go idle in SPI mode while ((status_ = cardCommand(CMD0, 0)) != R1_IDLE_STATE) { if (((uint16_t)(millis() - t0)) > SD_INIT_TIMEOUT) { error(SD_CARD_ERROR_CMD0); goto fail; } } // check SD version if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) { type(SD_CARD_TYPE_SD1); } else { // only need last byte of r7 response for (uint8_t i = 0; i < 4; i++) status_ = spiRec(); if (status_ != 0XAA) { error(SD_CARD_ERROR_CMD8); goto fail; } type(SD_CARD_TYPE_SD2); } // initialize card and send host supports SDHC if SD2 arg = type() == SD_CARD_TYPE_SD2 ? 0X40000000 : 0; while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) { // check for timeout if (((uint16_t)(millis() - t0)) > SD_INIT_TIMEOUT) { error(SD_CARD_ERROR_ACMD41); goto fail; } } // if SD2 read OCR register to check for SDHC card if (type() == SD_CARD_TYPE_SD2) { if (cardCommand(CMD58, 0)) { error(SD_CARD_ERROR_CMD58); goto fail; } if ((spiRec() & 0XC0) == 0XC0) type(SD_CARD_TYPE_SDHC); // discard rest of ocr - contains allowed voltage range for (uint8_t i = 0; i < 3; i++) spiRec(); } chipSelectHigh(); #ifndef SOFTWARE_SPI return setSckRate(sckRateID); #else // SOFTWARE_SPI return true; #endif // SOFTWARE_SPI fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** * Enable or disable partial block reads. * * Enabling partial block reads improves performance by allowing a block * to be read over the SPI bus as several sub-blocks. Errors may occur * if the time between reads is too long since the SD card may timeout. * The SPI SS line will be held low until the entire block is read or * readEnd() is called. * * Use this for applications like the Adafruit Wave Shield. * * \param[in] value The value TRUE (non-zero) or FALSE (zero).) */ void Sd2Card::partialBlockRead(uint8_t value) { readEnd(); partialBlockRead_ = value; } //------------------------------------------------------------------------------ /** * Read a 512 byte block from an SD card device. * * \param[in] block Logical block to be read. * \param[out] dst Pointer to the location that will receive the data. * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ uint8_t Sd2Card::readBlock(uint32_t block, uint8_t* dst) { return readData(block, 0, 512, dst); } //------------------------------------------------------------------------------ /** * Read part of a 512 byte block from an SD card. * * \param[in] block Logical block to be read. * \param[in] offset Number of bytes to skip at start of block * \param[out] dst Pointer to the location that will receive the data. * \param[in] count Number of bytes to read * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ uint8_t Sd2Card::readData(uint32_t block, uint16_t offset, uint16_t count, uint8_t* dst) { if (count == 0) return true; if ((count + offset) > 512) { goto fail; } if (!inBlock_ || block != block_ || offset < offset_) { block_ = block; // use address if not SDHC card if (type()!= SD_CARD_TYPE_SDHC) block <<= 9; if (cardCommand(CMD17, block)) { error(SD_CARD_ERROR_CMD17); goto fail; } if (!waitStartBlock()) { goto fail; } offset_ = 0; inBlock_ = 1; } #ifdef OPTIMIZE_HARDWARE_SPI // start first spi transfer SPDR = 0XFF; // skip data before offset for (;offset_ < offset; offset_++) { while (!(SPSR & (1 << SPIF))) ; SPDR = 0XFF; } // transfer data n = count - 1; for (uint16_t i = 0; i < n; i++) { while (!(SPSR & (1 << SPIF))) ; dst[i] = SPDR; SPDR = 0XFF; } // wait for last byte while (!(SPSR & (1 << SPIF))) ; dst[n] = SPDR; #else // OPTIMIZE_HARDWARE_SPI // skip data before offset for (;offset_ < offset; offset_++) { spiRec(); } // transfer data for (uint16_t i = 0; i < count; i++) { dst[i] = spiRec(); } #endif // OPTIMIZE_HARDWARE_SPI offset_ += count; if (!partialBlockRead_ || offset_ >= 512) { // read rest of data, checksum and set chip select high readEnd(); } return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** Skip remaining data in a block when in partial block read mode. */ void Sd2Card::readEnd(void) { if (inBlock_) { // skip data and crc #ifdef OPTIMIZE_HARDWARE_SPI // optimize skip for hardware SPDR = 0XFF; while (offset_++ < 513) { while (!(SPSR & (1 << SPIF))) ; SPDR = 0XFF; } // wait for last crc byte while (!(SPSR & (1 << SPIF))) ; #else // OPTIMIZE_HARDWARE_SPI while (offset_++ < 514) spiRec(); #endif // OPTIMIZE_HARDWARE_SPI chipSelectHigh(); inBlock_ = 0; } } //------------------------------------------------------------------------------ /** read CID or CSR register */ uint8_t Sd2Card::readRegister(uint8_t cmd, void* buf) { uint8_t* dst = reinterpret_cast(buf); if (cardCommand(cmd, 0)) { error(SD_CARD_ERROR_READ_REG); goto fail; } if (!waitStartBlock()) goto fail; // transfer data for (uint16_t i = 0; i < 16; i++) dst[i] = spiRec(); spiRec(); // get first crc byte spiRec(); // get second crc byte chipSelectHigh(); return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** * Set the SPI clock rate. * * \param[in] sckRateID A value in the range [0, 6]. * * The SPI clock will be set to F_CPU/pow(2, 1 + sckRateID). The maximum * SPI rate is F_CPU/2 for \a sckRateID = 0 and the minimum rate is F_CPU/128 * for \a scsRateID = 6. * * \return The value one, true, is returned for success and the value zero, * false, is returned for an invalid value of \a sckRateID. */ uint8_t Sd2Card::setSckRate(uint8_t sckRateID) { if (sckRateID > 6) { error(SD_CARD_ERROR_SCK_RATE); return false; } #ifndef USE_SPI_LIB // see avr processor datasheet for SPI register bit definitions if ((sckRateID & 1) || sckRateID == 6) { SPSR &= ~(1 << SPI2X); } else { SPSR |= (1 << SPI2X); } SPCR &= ~((1 < SD_READ_TIMEOUT) { error(SD_CARD_ERROR_READ_TIMEOUT); goto fail; } } if (status_ != DATA_START_BLOCK) { error(SD_CARD_ERROR_READ); goto fail; } return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** * Writes a 512 byte block to an SD card. * * \param[in] blockNumber Logical block to be written. * \param[in] src Pointer to the location of the data to be written. * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ uint8_t Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) { #if SD_PROTECT_BLOCK_ZERO // don't allow write to first block if (blockNumber == 0) { error(SD_CARD_ERROR_WRITE_BLOCK_ZERO); goto fail; } #endif // SD_PROTECT_BLOCK_ZERO // use address if not SDHC card if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9; if (cardCommand(CMD24, blockNumber)) { error(SD_CARD_ERROR_CMD24); goto fail; } if (!writeData(DATA_START_BLOCK, src)) goto fail; // wait for flash programming to complete if (!waitNotBusy(SD_WRITE_TIMEOUT)) { error(SD_CARD_ERROR_WRITE_TIMEOUT); goto fail; } // response is r2 so get and check two bytes for nonzero if (cardCommand(CMD13, 0) || spiRec()) { error(SD_CARD_ERROR_WRITE_PROGRAMMING); goto fail; } chipSelectHigh(); return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** Write one data block in a multiple block write sequence */ uint8_t Sd2Card::writeData(const uint8_t* src) { // wait for previous write to finish if (!waitNotBusy(SD_WRITE_TIMEOUT)) { error(SD_CARD_ERROR_WRITE_MULTIPLE); chipSelectHigh(); return false; } return writeData(WRITE_MULTIPLE_TOKEN, src); } //------------------------------------------------------------------------------ // send one block of data for write block or write multiple blocks uint8_t Sd2Card::writeData(uint8_t token, const uint8_t* src) { #ifdef OPTIMIZE_HARDWARE_SPI // send data - optimized loop SPDR = token; // send two byte per iteration for (uint16_t i = 0; i < 512; i += 2) { while (!(SPSR & (1 << SPIF))) ; SPDR = src[i]; while (!(SPSR & (1 << SPIF))) ; SPDR = src[i+1]; } // wait for last data byte while (!(SPSR & (1 << SPIF))) ; #else // OPTIMIZE_HARDWARE_SPI spiSend(token); for (uint16_t i = 0; i < 512; i++) { spiSend(src[i]); } #endif // OPTIMIZE_HARDWARE_SPI spiSend(0xff); // dummy crc spiSend(0xff); // dummy crc status_ = spiRec(); if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) { error(SD_CARD_ERROR_WRITE); chipSelectHigh(); return false; } return true; } //------------------------------------------------------------------------------ /** Start a write multiple blocks sequence. * * \param[in] blockNumber Address of first block in sequence. * \param[in] eraseCount The number of blocks to be pre-erased. * * \note This function is used with writeData() and writeStop() * for optimized multiple block writes. * * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ uint8_t Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) { #if SD_PROTECT_BLOCK_ZERO // don't allow write to first block if (blockNumber == 0) { error(SD_CARD_ERROR_WRITE_BLOCK_ZERO); goto fail; } #endif // SD_PROTECT_BLOCK_ZERO // send pre-erase count if (cardAcmd(ACMD23, eraseCount)) { error(SD_CARD_ERROR_ACMD23); goto fail; } // use address if not SDHC card if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9; if (cardCommand(CMD25, blockNumber)) { error(SD_CARD_ERROR_CMD25); goto fail; } return true; fail: chipSelectHigh(); return false; } //------------------------------------------------------------------------------ /** End a write multiple blocks sequence. * * \return The value one, true, is returned for success and * the value zero, false, is returned for failure. */ uint8_t Sd2Card::writeStop(void) { if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail; spiSend(STOP_TRAN_TOKEN); if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto fail; chipSelectHigh(); return true; fail: error(SD_CARD_ERROR_STOP_TRAN); chipSelectHigh(); return false; }