/* * SHA-512 algorithm as described at * * http://csrc.nist.gov/cryptval/shs.html * * Modifications made for SHA-384 also */ #ifdef SHA512_STANDALONE typedef struct { uint64 h[8]; unsigned char block[128]; int blkused; uint32 len[4]; } SHA512_State; #else #include "ssh.h" #endif #define BLKSIZE 128 /* * Arithmetic implementations. Note that AND, XOR and NOT can * overlap destination with one source, but the others can't. */ #define add(r,x,y) ( r.lo = y.lo + x.lo, \ r.hi = y.hi + x.hi + ((uint32)r.lo < (uint32)y.lo) ) #define rorB(r,x,y) ( r.lo = ((uint32)x.hi >> ((y)-32)) | ((uint32)x.lo << (64-(y))), \ r.hi = ((uint32)x.lo >> ((y)-32)) | ((uint32)x.hi << (64-(y))) ) #define rorL(r,x,y) ( r.lo = ((uint32)x.lo >> (y)) | ((uint32)x.hi << (32-(y))), \ r.hi = ((uint32)x.hi >> (y)) | ((uint32)x.lo << (32-(y))) ) #define shrB(r,x,y) ( r.lo = (uint32)x.hi >> ((y)-32), r.hi = 0 ) #define shrL(r,x,y) ( r.lo = ((uint32)x.lo >> (y)) | ((uint32)x.hi << (32-(y))), \ r.hi = (uint32)x.hi >> (y) ) #define putty_and(r,x,y) ( r.lo = x.lo & y.lo, r.hi = x.hi & y.hi ) #define putty_xor(r,x,y) ( r.lo = x.lo ^ y.lo, r.hi = x.hi ^ y.hi ) #define putty_not(r,x) ( r.lo = ~x.lo, r.hi = ~x.hi ) #define INIT(h,l) { h, l } #define BUILD(r,h,l) ( r.hi = h, r.lo = l ) #define EXTRACT(h,l,r) ( h = r.hi, l = r.lo ) /* ---------------------------------------------------------------------- * Core SHA512 algorithm: processes 16-doubleword blocks into a * message digest. */ #define Ch(r,t,x,y,z) ( putty_not(t,x), putty_and(r,t,z), putty_and(t,x,y), putty_xor(r,r,t) ) #define Maj(r,t,x,y,z) ( putty_and(r,x,y), putty_and(t,x,z), putty_xor(r,r,t), \ putty_and(t,y,z), putty_xor(r,r,t) ) #define bigsigma0(r,t,x) ( rorL(r,x,28), rorB(t,x,34), putty_xor(r,r,t), \ rorB(t,x,39), putty_xor(r,r,t) ) #define bigsigma1(r,t,x) ( rorL(r,x,14), rorL(t,x,18), putty_xor(r,r,t), \ rorB(t,x,41), putty_xor(r,r,t) ) #define smallsigma0(r,t,x) ( rorL(r,x,1), rorL(t,x,8), putty_xor(r,r,t), \ shrL(t,x,7), putty_xor(r,r,t) ) #define smallsigma1(r,t,x) ( rorL(r,x,19), rorB(t,x,61), putty_xor(r,r,t), \ shrL(t,x,6), putty_xor(r,r,t) ) static void SHA512_Core_Init(SHA512_State *s) { static const uint64 iv[] = { INIT(0x6a09e667, 0xf3bcc908), INIT(0xbb67ae85, 0x84caa73b), INIT(0x3c6ef372, 0xfe94f82b), INIT(0xa54ff53a, 0x5f1d36f1), INIT(0x510e527f, 0xade682d1), INIT(0x9b05688c, 0x2b3e6c1f), INIT(0x1f83d9ab, 0xfb41bd6b), INIT(0x5be0cd19, 0x137e2179), }; int i; for (i = 0; i < 8; i++) s->h[i] = iv[i]; } #ifndef SHA512_STANDALONE static void SHA384_Core_Init(SHA512_State *s) { static const uint64 iv[] = { INIT(0xcbbb9d5d, 0xc1059ed8), INIT(0x629a292a, 0x367cd507), INIT(0x9159015a, 0x3070dd17), INIT(0x152fecd8, 0xf70e5939), INIT(0x67332667, 0xffc00b31), INIT(0x8eb44a87, 0x68581511), INIT(0xdb0c2e0d, 0x64f98fa7), INIT(0x47b5481d, 0xbefa4fa4), }; int i; for (i = 0; i < 8; i++) s->h[i] = iv[i]; } #endif static void SHA512_Block(SHA512_State *s, uint64 *block) { uint64 w[80]; uint64 a,b,c,d,e,f,g,h; static const uint64 k[] = { INIT(0x428a2f98, 0xd728ae22), INIT(0x71374491, 0x23ef65cd), INIT(0xb5c0fbcf, 0xec4d3b2f), INIT(0xe9b5dba5, 0x8189dbbc), INIT(0x3956c25b, 0xf348b538), INIT(0x59f111f1, 0xb605d019), INIT(0x923f82a4, 0xaf194f9b), INIT(0xab1c5ed5, 0xda6d8118), INIT(0xd807aa98, 0xa3030242), INIT(0x12835b01, 0x45706fbe), INIT(0x243185be, 0x4ee4b28c), INIT(0x550c7dc3, 0xd5ffb4e2), INIT(0x72be5d74, 0xf27b896f), INIT(0x80deb1fe, 0x3b1696b1), INIT(0x9bdc06a7, 0x25c71235), INIT(0xc19bf174, 0xcf692694), INIT(0xe49b69c1, 0x9ef14ad2), INIT(0xefbe4786, 0x384f25e3), INIT(0x0fc19dc6, 0x8b8cd5b5), INIT(0x240ca1cc, 0x77ac9c65), INIT(0x2de92c6f, 0x592b0275), INIT(0x4a7484aa, 0x6ea6e483), INIT(0x5cb0a9dc, 0xbd41fbd4), INIT(0x76f988da, 0x831153b5), INIT(0x983e5152, 0xee66dfab), INIT(0xa831c66d, 0x2db43210), INIT(0xb00327c8, 0x98fb213f), INIT(0xbf597fc7, 0xbeef0ee4), INIT(0xc6e00bf3, 0x3da88fc2), INIT(0xd5a79147, 0x930aa725), INIT(0x06ca6351, 0xe003826f), INIT(0x14292967, 0x0a0e6e70), INIT(0x27b70a85, 0x46d22ffc), INIT(0x2e1b2138, 0x5c26c926), INIT(0x4d2c6dfc, 0x5ac42aed), INIT(0x53380d13, 0x9d95b3df), INIT(0x650a7354, 0x8baf63de), INIT(0x766a0abb, 0x3c77b2a8), INIT(0x81c2c92e, 0x47edaee6), INIT(0x92722c85, 0x1482353b), INIT(0xa2bfe8a1, 0x4cf10364), INIT(0xa81a664b, 0xbc423001), INIT(0xc24b8b70, 0xd0f89791), INIT(0xc76c51a3, 0x0654be30), INIT(0xd192e819, 0xd6ef5218), INIT(0xd6990624, 0x5565a910), INIT(0xf40e3585, 0x5771202a), INIT(0x106aa070, 0x32bbd1b8), INIT(0x19a4c116, 0xb8d2d0c8), INIT(0x1e376c08, 0x5141ab53), INIT(0x2748774c, 0xdf8eeb99), INIT(0x34b0bcb5, 0xe19b48a8), INIT(0x391c0cb3, 0xc5c95a63), INIT(0x4ed8aa4a, 0xe3418acb), INIT(0x5b9cca4f, 0x7763e373), INIT(0x682e6ff3, 0xd6b2b8a3), INIT(0x748f82ee, 0x5defb2fc), INIT(0x78a5636f, 0x43172f60), INIT(0x84c87814, 0xa1f0ab72), INIT(0x8cc70208, 0x1a6439ec), INIT(0x90befffa, 0x23631e28), INIT(0xa4506ceb, 0xde82bde9), INIT(0xbef9a3f7, 0xb2c67915), INIT(0xc67178f2, 0xe372532b), INIT(0xca273ece, 0xea26619c), INIT(0xd186b8c7, 0x21c0c207), INIT(0xeada7dd6, 0xcde0eb1e), INIT(0xf57d4f7f, 0xee6ed178), INIT(0x06f067aa, 0x72176fba), INIT(0x0a637dc5, 0xa2c898a6), INIT(0x113f9804, 0xbef90dae), INIT(0x1b710b35, 0x131c471b), INIT(0x28db77f5, 0x23047d84), INIT(0x32caab7b, 0x40c72493), INIT(0x3c9ebe0a, 0x15c9bebc), INIT(0x431d67c4, 0x9c100d4c), INIT(0x4cc5d4be, 0xcb3e42b6), INIT(0x597f299c, 0xfc657e2a), INIT(0x5fcb6fab, 0x3ad6faec), INIT(0x6c44198c, 0x4a475817), }; int t; for (t = 0; t < 16; t++) w[t] = block[t]; for (t = 16; t < 80; t++) { uint64 p, q, r, tmp; smallsigma1(p, tmp, w[t-2]); smallsigma0(q, tmp, w[t-15]); add(r, p, q); add(p, r, w[t-7]); add(w[t], p, w[t-16]); } a = s->h[0]; b = s->h[1]; c = s->h[2]; d = s->h[3]; e = s->h[4]; f = s->h[5]; g = s->h[6]; h = s->h[7]; for (t = 0; t < 80; t+=8) { uint64 tmp, p, q, r; #define ROUND(j,a,b,c,d,e,f,g,h) \ bigsigma1(p, tmp, e); \ Ch(q, tmp, e, f, g); \ add(r, p, q); \ add(p, r, k[j]) ; \ add(q, p, w[j]); \ add(r, q, h); \ bigsigma0(p, tmp, a); \ Maj(tmp, q, a, b, c); \ add(q, tmp, p); \ add(p, r, d); \ d = p; \ add(h, q, r); ROUND(t+0, a,b,c,d,e,f,g,h); ROUND(t+1, h,a,b,c,d,e,f,g); ROUND(t+2, g,h,a,b,c,d,e,f); ROUND(t+3, f,g,h,a,b,c,d,e); ROUND(t+4, e,f,g,h,a,b,c,d); ROUND(t+5, d,e,f,g,h,a,b,c); ROUND(t+6, c,d,e,f,g,h,a,b); ROUND(t+7, b,c,d,e,f,g,h,a); } { uint64 tmp; #define UPDATE(state, local) ( tmp = state, add(state, tmp, local) ) UPDATE(s->h[0], a); UPDATE(s->h[1], b); UPDATE(s->h[2], c); UPDATE(s->h[3], d); UPDATE(s->h[4], e); UPDATE(s->h[5], f); UPDATE(s->h[6], g); UPDATE(s->h[7], h); } } /* ---------------------------------------------------------------------- * Outer SHA512 algorithm: take an arbitrary length byte string, * convert it into 16-doubleword blocks with the prescribed padding * at the end, and pass those blocks to the core SHA512 algorithm. */ void SHA512_Init(SHA512_State *s) { int i; SHA512_Core_Init(s); s->blkused = 0; for (i = 0; i < 4; i++) s->len[i] = 0; } #ifndef SHA512_STANDALONE void SHA384_Init(SHA512_State *s) { int i; SHA384_Core_Init(s); s->blkused = 0; for (i = 0; i < 4; i++) s->len[i] = 0; } #endif void SHA512_Bytes(SHA512_State *s, const void *p, int len) { unsigned char *q = (unsigned char *)p; uint64 wordblock[16]; uint32 lenw = len; int i; /* * Update the length field. */ for (i = 0; i < 4; i++) { s->len[i] += lenw; lenw = (s->len[i] < lenw); } if (s->blkused && s->blkused+len < BLKSIZE) { /* * Trivial case: just add to the block. */ memcpy(s->block + s->blkused, q, len); s->blkused += len; } else { /* * We must complete and process at least one block. */ while (s->blkused + len >= BLKSIZE) { memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused); q += BLKSIZE - s->blkused; len -= BLKSIZE - s->blkused; /* Now process the block. Gather bytes big-endian into words */ for (i = 0; i < 16; i++) { uint32 h, l; h = ( ((uint32)s->block[i*8+0]) << 24 ) | ( ((uint32)s->block[i*8+1]) << 16 ) | ( ((uint32)s->block[i*8+2]) << 8 ) | ( ((uint32)s->block[i*8+3]) << 0 ); l = ( ((uint32)s->block[i*8+4]) << 24 ) | ( ((uint32)s->block[i*8+5]) << 16 ) | ( ((uint32)s->block[i*8+6]) << 8 ) | ( ((uint32)s->block[i*8+7]) << 0 ); BUILD(wordblock[i], h, l); } SHA512_Block(s, wordblock); s->blkused = 0; } memcpy(s->block, q, len); s->blkused = len; } } void SHA512_Final(SHA512_State *s, unsigned char *digest) { int i; int pad; unsigned char c[BLKSIZE]; uint32 len[4]; if (s->blkused >= BLKSIZE-16) pad = (BLKSIZE-16) + BLKSIZE - s->blkused; else pad = (BLKSIZE-16) - s->blkused; for (i = 4; i-- ;) { uint32 lenhi = s->len[i]; uint32 lenlo = i > 0 ? s->len[i-1] : 0; len[i] = (lenhi << 3) | (lenlo >> (32-3)); } memset(c, 0, pad); c[0] = 0x80; SHA512_Bytes(s, &c, pad); for (i = 0; i < 4; i++) { c[i*4+0] = (len[3-i] >> 24) & 0xFF; c[i*4+1] = (len[3-i] >> 16) & 0xFF; c[i*4+2] = (len[3-i] >> 8) & 0xFF; c[i*4+3] = (len[3-i] >> 0) & 0xFF; } SHA512_Bytes(s, &c, 16); for (i = 0; i < 8; i++) { uint32 h, l; EXTRACT(h, l, s->h[i]); digest[i*8+0] = (h >> 24) & 0xFF; digest[i*8+1] = (h >> 16) & 0xFF; digest[i*8+2] = (h >> 8) & 0xFF; digest[i*8+3] = (h >> 0) & 0xFF; digest[i*8+4] = (l >> 24) & 0xFF; digest[i*8+5] = (l >> 16) & 0xFF; digest[i*8+6] = (l >> 8) & 0xFF; digest[i*8+7] = (l >> 0) & 0xFF; } } #ifndef SHA512_STANDALONE void SHA384_Final(SHA512_State *s, unsigned char *digest) { unsigned char biggerDigest[512 / 8]; SHA512_Final(s, biggerDigest); memcpy(digest, biggerDigest, 384 / 8); } void SHA512_Simple(const void *p, int len, unsigned char *output) { SHA512_State s; SHA512_Init(&s); SHA512_Bytes(&s, p, len); SHA512_Final(&s, output); smemclr(&s, sizeof(s)); } void SHA384_Simple(const void *p, int len, unsigned char *output) { SHA512_State s; SHA384_Init(&s); SHA512_Bytes(&s, p, len); SHA384_Final(&s, output); smemclr(&s, sizeof(s)); } /* * Thin abstraction for things where hashes are pluggable. */ static void *sha512_init(void) { SHA512_State *s; s = snew(SHA512_State); SHA512_Init(s); return s; } static void *sha512_copy(const void *vold) { const SHA512_State *old = (const SHA512_State *)vold; SHA512_State *s; s = snew(SHA512_State); *s = *old; return s; } static void sha512_free(void *handle) { SHA512_State *s = handle; smemclr(s, sizeof(*s)); sfree(s); } static void sha512_bytes(void *handle, const void *p, int len) { SHA512_State *s = handle; SHA512_Bytes(s, p, len); } static void sha512_final(void *handle, unsigned char *output) { SHA512_State *s = handle; SHA512_Final(s, output); sha512_free(s); } const struct ssh_hash ssh_sha512 = { sha512_init, sha512_copy, sha512_bytes, sha512_final, sha512_free, 64, "SHA-512" }; static void *sha384_init(void) { SHA512_State *s; s = snew(SHA512_State); SHA384_Init(s); return s; } static void sha384_final(void *handle, unsigned char *output) { SHA512_State *s = handle; SHA384_Final(s, output); smemclr(s, sizeof(*s)); sfree(s); } const struct ssh_hash ssh_sha384 = { sha384_init, sha512_copy, sha512_bytes, sha384_final, sha512_free, 48, "SHA-384" }; #endif #ifdef TEST #include #include #include int main(void) { unsigned char digest[64]; int i, j, errors; struct { const char *teststring; unsigned char digest512[64]; } tests[] = { { "abc", { 0xdd, 0xaf, 0x35, 0xa1, 0x93, 0x61, 0x7a, 0xba, 0xcc, 0x41, 0x73, 0x49, 0xae, 0x20, 0x41, 0x31, 0x12, 0xe6, 0xfa, 0x4e, 0x89, 0xa9, 0x7e, 0xa2, 0x0a, 0x9e, 0xee, 0xe6, 0x4b, 0x55, 0xd3, 0x9a, 0x21, 0x92, 0x99, 0x2a, 0x27, 0x4f, 0xc1, 0xa8, 0x36, 0xba, 0x3c, 0x23, 0xa3, 0xfe, 0xeb, 0xbd, 0x45, 0x4d, 0x44, 0x23, 0x64, 0x3c, 0xe8, 0x0e, 0x2a, 0x9a, 0xc9, 0x4f, 0xa5, 0x4c, 0xa4, 0x9f, } }, { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn" "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", { 0x8e, 0x95, 0x9b, 0x75, 0xda, 0xe3, 0x13, 0xda, 0x8c, 0xf4, 0xf7, 0x28, 0x14, 0xfc, 0x14, 0x3f, 0x8f, 0x77, 0x79, 0xc6, 0xeb, 0x9f, 0x7f, 0xa1, 0x72, 0x99, 0xae, 0xad, 0xb6, 0x88, 0x90, 0x18, 0x50, 0x1d, 0x28, 0x9e, 0x49, 0x00, 0xf7, 0xe4, 0x33, 0x1b, 0x99, 0xde, 0xc4, 0xb5, 0x43, 0x3a, 0xc7, 0xd3, 0x29, 0xee, 0xb6, 0xdd, 0x26, 0x54, 0x5e, 0x96, 0xe5, 0x5b, 0x87, 0x4b, 0xe9, 0x09, } }, { NULL, { 0xe7, 0x18, 0x48, 0x3d, 0x0c, 0xe7, 0x69, 0x64, 0x4e, 0x2e, 0x42, 0xc7, 0xbc, 0x15, 0xb4, 0x63, 0x8e, 0x1f, 0x98, 0xb1, 0x3b, 0x20, 0x44, 0x28, 0x56, 0x32, 0xa8, 0x03, 0xaf, 0xa9, 0x73, 0xeb, 0xde, 0x0f, 0xf2, 0x44, 0x87, 0x7e, 0xa6, 0x0a, 0x4c, 0xb0, 0x43, 0x2c, 0xe5, 0x77, 0xc3, 0x1b, 0xeb, 0x00, 0x9c, 0x5c, 0x2c, 0x49, 0xaa, 0x2e, 0x4e, 0xad, 0xb2, 0x17, 0xad, 0x8c, 0xc0, 0x9b, } }, }; errors = 0; for (i = 0; i < sizeof(tests) / sizeof(*tests); i++) { if (tests[i].teststring) { SHA512_Simple(tests[i].teststring, strlen(tests[i].teststring), digest); } else { SHA512_State s; int n; SHA512_Init(&s); for (n = 0; n < 1000000 / 40; n++) SHA512_Bytes(&s, "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", 40); SHA512_Final(&s, digest); } for (j = 0; j < 64; j++) { if (digest[j] != tests[i].digest512[j]) { fprintf(stderr, "\"%s\" digest512 byte %d should be 0x%02x, is 0x%02x\n", tests[i].teststring, j, tests[i].digest512[j], digest[j]); errors++; } } } printf("%d errors\n", errors); return 0; } #endif