// Algorithm implementation -*- C++ -*- // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, // 2010, 2011 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file bits/stl_algo.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{algorithm} */ #ifndef _STL_ALGO_H #define _STL_ALGO_H 1 #include // for rand #include #include #include // for _Temporary_buffer #ifdef __GXX_EXPERIMENTAL_CXX0X__ #include // for std::uniform_int_distribution #include // for std::bind #endif // See concept_check.h for the __glibcxx_*_requires macros. namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION /// Swaps the median value of *__a, *__b and *__c to *__a template void __move_median_first(_Iterator __a, _Iterator __b, _Iterator __c) { // concept requirements __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_Iterator>::value_type>) if (*__a < *__b) { if (*__b < *__c) std::iter_swap(__a, __b); else if (*__a < *__c) std::iter_swap(__a, __c); } else if (*__a < *__c) return; else if (*__b < *__c) std::iter_swap(__a, __c); else std::iter_swap(__a, __b); } /// Swaps the median value of *__a, *__b and *__c under __comp to *__a template void __move_median_first(_Iterator __a, _Iterator __b, _Iterator __c, _Compare __comp) { // concept requirements __glibcxx_function_requires(_BinaryFunctionConcept<_Compare, bool, typename iterator_traits<_Iterator>::value_type, typename iterator_traits<_Iterator>::value_type>) if (__comp(*__a, *__b)) { if (__comp(*__b, *__c)) std::iter_swap(__a, __b); else if (__comp(*__a, *__c)) std::iter_swap(__a, __c); } else if (__comp(*__a, *__c)) return; else if (__comp(*__b, *__c)) std::iter_swap(__a, __c); else std::iter_swap(__a, __b); } // for_each /// This is an overload used by find() for the Input Iterator case. template inline _InputIterator __find(_InputIterator __first, _InputIterator __last, const _Tp& __val, input_iterator_tag) { while (__first != __last && !(*__first == __val)) ++__first; return __first; } /// This is an overload used by find_if() for the Input Iterator case. template inline _InputIterator __find_if(_InputIterator __first, _InputIterator __last, _Predicate __pred, input_iterator_tag) { while (__first != __last && !bool(__pred(*__first))) ++__first; return __first; } /// This is an overload used by find() for the RAI case. template _RandomAccessIterator __find(_RandomAccessIterator __first, _RandomAccessIterator __last, const _Tp& __val, random_access_iterator_tag) { typename iterator_traits<_RandomAccessIterator>::difference_type __trip_count = (__last - __first) >> 2; for (; __trip_count > 0; --__trip_count) { if (*__first == __val) return __first; ++__first; if (*__first == __val) return __first; ++__first; if (*__first == __val) return __first; ++__first; if (*__first == __val) return __first; ++__first; } switch (__last - __first) { case 3: if (*__first == __val) return __first; ++__first; case 2: if (*__first == __val) return __first; ++__first; case 1: if (*__first == __val) return __first; ++__first; case 0: default: return __last; } } /// This is an overload used by find_if() for the RAI case. template _RandomAccessIterator __find_if(_RandomAccessIterator __first, _RandomAccessIterator __last, _Predicate __pred, random_access_iterator_tag) { typename iterator_traits<_RandomAccessIterator>::difference_type __trip_count = (__last - __first) >> 2; for (; __trip_count > 0; --__trip_count) { if (__pred(*__first)) return __first; ++__first; if (__pred(*__first)) return __first; ++__first; if (__pred(*__first)) return __first; ++__first; if (__pred(*__first)) return __first; ++__first; } switch (__last - __first) { case 3: if (__pred(*__first)) return __first; ++__first; case 2: if (__pred(*__first)) return __first; ++__first; case 1: if (__pred(*__first)) return __first; ++__first; case 0: default: return __last; } } #ifdef __GXX_EXPERIMENTAL_CXX0X__ /// This is an overload used by find_if_not() for the Input Iterator case. template inline _InputIterator __find_if_not(_InputIterator __first, _InputIterator __last, _Predicate __pred, input_iterator_tag) { while (__first != __last && bool(__pred(*__first))) ++__first; return __first; } /// This is an overload used by find_if_not() for the RAI case. template _RandomAccessIterator __find_if_not(_RandomAccessIterator __first, _RandomAccessIterator __last, _Predicate __pred, random_access_iterator_tag) { typename iterator_traits<_RandomAccessIterator>::difference_type __trip_count = (__last - __first) >> 2; for (; __trip_count > 0; --__trip_count) { if (!bool(__pred(*__first))) return __first; ++__first; if (!bool(__pred(*__first))) return __first; ++__first; if (!bool(__pred(*__first))) return __first; ++__first; if (!bool(__pred(*__first))) return __first; ++__first; } switch (__last - __first) { case 3: if (!bool(__pred(*__first))) return __first; ++__first; case 2: if (!bool(__pred(*__first))) return __first; ++__first; case 1: if (!bool(__pred(*__first))) return __first; ++__first; case 0: default: return __last; } } #endif // set_difference // set_intersection // set_symmetric_difference // set_union // for_each // find // find_if // find_first_of // adjacent_find // count // count_if // search /** * This is an uglified * search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&) * overloaded for forward iterators. */ template _ForwardIterator __search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val, std::forward_iterator_tag) { __first = _GLIBCXX_STD_A::find(__first, __last, __val); while (__first != __last) { typename iterator_traits<_ForwardIterator>::difference_type __n = __count; _ForwardIterator __i = __first; ++__i; while (__i != __last && __n != 1 && *__i == __val) { ++__i; --__n; } if (__n == 1) return __first; if (__i == __last) return __last; __first = _GLIBCXX_STD_A::find(++__i, __last, __val); } return __last; } /** * This is an uglified * search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&) * overloaded for random access iterators. */ template _RandomAccessIter __search_n(_RandomAccessIter __first, _RandomAccessIter __last, _Integer __count, const _Tp& __val, std::random_access_iterator_tag) { typedef typename std::iterator_traits<_RandomAccessIter>::difference_type _DistanceType; _DistanceType __tailSize = __last - __first; const _DistanceType __pattSize = __count; if (__tailSize < __pattSize) return __last; const _DistanceType __skipOffset = __pattSize - 1; _RandomAccessIter __lookAhead = __first + __skipOffset; __tailSize -= __pattSize; while (1) // the main loop... { // __lookAhead here is always pointing to the last element of next // possible match. while (!(*__lookAhead == __val)) // the skip loop... { if (__tailSize < __pattSize) return __last; // Failure __lookAhead += __pattSize; __tailSize -= __pattSize; } _DistanceType __remainder = __skipOffset; for (_RandomAccessIter __backTrack = __lookAhead - 1; *__backTrack == __val; --__backTrack) { if (--__remainder == 0) return (__lookAhead - __skipOffset); // Success } if (__remainder > __tailSize) return __last; // Failure __lookAhead += __remainder; __tailSize -= __remainder; } } // search_n /** * This is an uglified * search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&, * _BinaryPredicate) * overloaded for forward iterators. */ template _ForwardIterator __search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val, _BinaryPredicate __binary_pred, std::forward_iterator_tag) { while (__first != __last && !bool(__binary_pred(*__first, __val))) ++__first; while (__first != __last) { typename iterator_traits<_ForwardIterator>::difference_type __n = __count; _ForwardIterator __i = __first; ++__i; while (__i != __last && __n != 1 && bool(__binary_pred(*__i, __val))) { ++__i; --__n; } if (__n == 1) return __first; if (__i == __last) return __last; __first = ++__i; while (__first != __last && !bool(__binary_pred(*__first, __val))) ++__first; } return __last; } /** * This is an uglified * search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&, * _BinaryPredicate) * overloaded for random access iterators. */ template _RandomAccessIter __search_n(_RandomAccessIter __first, _RandomAccessIter __last, _Integer __count, const _Tp& __val, _BinaryPredicate __binary_pred, std::random_access_iterator_tag) { typedef typename std::iterator_traits<_RandomAccessIter>::difference_type _DistanceType; _DistanceType __tailSize = __last - __first; const _DistanceType __pattSize = __count; if (__tailSize < __pattSize) return __last; const _DistanceType __skipOffset = __pattSize - 1; _RandomAccessIter __lookAhead = __first + __skipOffset; __tailSize -= __pattSize; while (1) // the main loop... { // __lookAhead here is always pointing to the last element of next // possible match. while (!bool(__binary_pred(*__lookAhead, __val))) // the skip loop... { if (__tailSize < __pattSize) return __last; // Failure __lookAhead += __pattSize; __tailSize -= __pattSize; } _DistanceType __remainder = __skipOffset; for (_RandomAccessIter __backTrack = __lookAhead - 1; __binary_pred(*__backTrack, __val); --__backTrack) { if (--__remainder == 0) return (__lookAhead - __skipOffset); // Success } if (__remainder > __tailSize) return __last; // Failure __lookAhead += __remainder; __tailSize -= __remainder; } } // find_end for forward iterators. template _ForwardIterator1 __find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, forward_iterator_tag, forward_iterator_tag) { if (__first2 == __last2) return __last1; else { _ForwardIterator1 __result = __last1; while (1) { _ForwardIterator1 __new_result = _GLIBCXX_STD_A::search(__first1, __last1, __first2, __last2); if (__new_result == __last1) return __result; else { __result = __new_result; __first1 = __new_result; ++__first1; } } } } template _ForwardIterator1 __find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, forward_iterator_tag, forward_iterator_tag, _BinaryPredicate __comp) { if (__first2 == __last2) return __last1; else { _ForwardIterator1 __result = __last1; while (1) { _ForwardIterator1 __new_result = _GLIBCXX_STD_A::search(__first1, __last1, __first2, __last2, __comp); if (__new_result == __last1) return __result; else { __result = __new_result; __first1 = __new_result; ++__first1; } } } } // find_end for bidirectional iterators (much faster). template _BidirectionalIterator1 __find_end(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, bidirectional_iterator_tag, bidirectional_iterator_tag) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator1>) __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator2>) typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1; typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2; _RevIterator1 __rlast1(__first1); _RevIterator2 __rlast2(__first2); _RevIterator1 __rresult = _GLIBCXX_STD_A::search(_RevIterator1(__last1), __rlast1, _RevIterator2(__last2), __rlast2); if (__rresult == __rlast1) return __last1; else { _BidirectionalIterator1 __result = __rresult.base(); std::advance(__result, -std::distance(__first2, __last2)); return __result; } } template _BidirectionalIterator1 __find_end(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, bidirectional_iterator_tag, bidirectional_iterator_tag, _BinaryPredicate __comp) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator1>) __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator2>) typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1; typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2; _RevIterator1 __rlast1(__first1); _RevIterator2 __rlast2(__first2); _RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1, _RevIterator2(__last2), __rlast2, __comp); if (__rresult == __rlast1) return __last1; else { _BidirectionalIterator1 __result = __rresult.base(); std::advance(__result, -std::distance(__first2, __last2)); return __result; } } /** * @brief Find last matching subsequence in a sequence. * @ingroup non_mutating_algorithms * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of sequence to match. * @param last2 End of sequence to match. * @return The last iterator @c i in the range * @p [first1,last1-(last2-first2)) such that @c *(i+N) == @p *(first2+N) * for each @c N in the range @p [0,last2-first2), or @p last1 if no * such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2) and * returns an iterator to the first element of the sub-sequence, or * @p last1 if the sub-sequence is not found. The sub-sequence will be the * last such subsequence contained in [first,last1). * * Because the sub-sequence must lie completely within the range * @p [first1,last1) it must start at a position less than * @p last1-(last2-first2) where @p last2-first2 is the length of the * sub-sequence. * This means that the returned iterator @c i will be in the range * @p [first1,last1-(last2-first2)) */ template inline _ForwardIterator1 find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); return std::__find_end(__first1, __last1, __first2, __last2, std::__iterator_category(__first1), std::__iterator_category(__first2)); } /** * @brief Find last matching subsequence in a sequence using a predicate. * @ingroup non_mutating_algorithms * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of sequence to match. * @param last2 End of sequence to match. * @param comp The predicate to use. * @return The last iterator @c i in the range * @p [first1,last1-(last2-first2)) such that @c predicate(*(i+N), @p * (first2+N)) is true for each @c N in the range @p [0,last2-first2), or * @p last1 if no such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2) using * comp as a predicate and returns an iterator to the first element of the * sub-sequence, or @p last1 if the sub-sequence is not found. The * sub-sequence will be the last such subsequence contained in * [first,last1). * * Because the sub-sequence must lie completely within the range * @p [first1,last1) it must start at a position less than * @p last1-(last2-first2) where @p last2-first2 is the length of the * sub-sequence. * This means that the returned iterator @c i will be in the range * @p [first1,last1-(last2-first2)) */ template inline _ForwardIterator1 find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); return std::__find_end(__first1, __last1, __first2, __last2, std::__iterator_category(__first1), std::__iterator_category(__first2), __comp); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief Checks that a predicate is true for all the elements * of a sequence. * @ingroup non_mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param pred A predicate. * @return True if the check is true, false otherwise. * * Returns true if @p pred is true for each element in the range * @p [first,last), and false otherwise. */ template inline bool all_of(_InputIterator __first, _InputIterator __last, _Predicate __pred) { return __last == std::find_if_not(__first, __last, __pred); } /** * @brief Checks that a predicate is false for all the elements * of a sequence. * @ingroup non_mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param pred A predicate. * @return True if the check is true, false otherwise. * * Returns true if @p pred is false for each element in the range * @p [first,last), and false otherwise. */ template inline bool none_of(_InputIterator __first, _InputIterator __last, _Predicate __pred) { return __last == _GLIBCXX_STD_A::find_if(__first, __last, __pred); } /** * @brief Checks that a predicate is false for at least an element * of a sequence. * @ingroup non_mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param pred A predicate. * @return True if the check is true, false otherwise. * * Returns true if an element exists in the range @p [first,last) such that * @p pred is true, and false otherwise. */ template inline bool any_of(_InputIterator __first, _InputIterator __last, _Predicate __pred) { return !std::none_of(__first, __last, __pred); } /** * @brief Find the first element in a sequence for which a * predicate is false. * @ingroup non_mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param pred A predicate. * @return The first iterator @c i in the range @p [first,last) * such that @p pred(*i) is false, or @p last if no such iterator exists. */ template inline _InputIterator find_if_not(_InputIterator __first, _InputIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__find_if_not(__first, __last, __pred, std::__iterator_category(__first)); } /** * @brief Checks whether the sequence is partitioned. * @ingroup mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param pred A predicate. * @return True if the range @p [first,last) is partioned by @p pred, * i.e. if all elements that satisfy @p pred appear before those that * do not. */ template inline bool is_partitioned(_InputIterator __first, _InputIterator __last, _Predicate __pred) { __first = std::find_if_not(__first, __last, __pred); return std::none_of(__first, __last, __pred); } /** * @brief Find the partition point of a partitioned range. * @ingroup mutating_algorithms * @param first An iterator. * @param last Another iterator. * @param pred A predicate. * @return An iterator @p mid such that @p all_of(first, mid, pred) * and @p none_of(mid, last, pred) are both true. */ template _ForwardIterator partition_point(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) // A specific debug-mode test will be necessary... __glibcxx_requires_valid_range(__first, __last); typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; _DistanceType __len = std::distance(__first, __last); _DistanceType __half; _ForwardIterator __middle; while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (__pred(*__middle)) { __first = __middle; ++__first; __len = __len - __half - 1; } else __len = __half; } return __first; } #endif /** * @brief Copy a sequence, removing elements of a given value. * @ingroup mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param value The value to be removed. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) not equal to @p value * to the range beginning at @p result. * remove_copy() is stable, so the relative order of elements that are * copied is unchanged. */ template _OutputIterator remove_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) if (!(*__first == __value)) { *__result = *__first; ++__result; } return __result; } /** * @brief Copy a sequence, removing elements for which a predicate is true. * @ingroup mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param pred A predicate. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) for which * @p pred returns false to the range beginning at @p result. * * remove_copy_if() is stable, so the relative order of elements that are * copied is unchanged. */ template _OutputIterator remove_copy_if(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) if (!bool(__pred(*__first))) { *__result = *__first; ++__result; } return __result; } #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief Copy the elements of a sequence for which a predicate is true. * @ingroup mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param pred A predicate. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) for which * @p pred returns true to the range beginning at @p result. * * copy_if() is stable, so the relative order of elements that are * copied is unchanged. */ template _OutputIterator copy_if(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) if (__pred(*__first)) { *__result = *__first; ++__result; } return __result; } template _OutputIterator __copy_n(_InputIterator __first, _Size __n, _OutputIterator __result, input_iterator_tag) { for (; __n > 0; --__n) { *__result = *__first; ++__first; ++__result; } return __result; } template inline _OutputIterator __copy_n(_RandomAccessIterator __first, _Size __n, _OutputIterator __result, random_access_iterator_tag) { return std::copy(__first, __first + __n, __result); } /** * @brief Copies the range [first,first+n) into [result,result+n). * @ingroup mutating_algorithms * @param first An input iterator. * @param n The number of elements to copy. * @param result An output iterator. * @return result+n. * * This inline function will boil down to a call to @c memmove whenever * possible. Failing that, if random access iterators are passed, then the * loop count will be known (and therefore a candidate for compiler * optimizations such as unrolling). */ template inline _OutputIterator copy_n(_InputIterator __first, _Size __n, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) return std::__copy_n(__first, __n, __result, std::__iterator_category(__first)); } /** * @brief Copy the elements of a sequence to separate output sequences * depending on the truth value of a predicate. * @ingroup mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param out_true An output iterator. * @param out_false An output iterator. * @param pred A predicate. * @return A pair designating the ends of the resulting sequences. * * Copies each element in the range @p [first,last) for which * @p pred returns true to the range beginning at @p out_true * and each element for which @p pred returns false to @p out_false. */ template pair<_OutputIterator1, _OutputIterator2> partition_copy(_InputIterator __first, _InputIterator __last, _OutputIterator1 __out_true, _OutputIterator2 __out_false, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator1, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator2, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) if (__pred(*__first)) { *__out_true = *__first; ++__out_true; } else { *__out_false = *__first; ++__out_false; } return pair<_OutputIterator1, _OutputIterator2>(__out_true, __out_false); } #endif /** * @brief Remove elements from a sequence. * @ingroup mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param value The value to be removed. * @return An iterator designating the end of the resulting sequence. * * All elements equal to @p value are removed from the range * @p [first,last). * * remove() is stable, so the relative order of elements that are * not removed is unchanged. * * Elements between the end of the resulting sequence and @p last * are still present, but their value is unspecified. */ template _ForwardIterator remove(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); __first = _GLIBCXX_STD_A::find(__first, __last, __value); if(__first == __last) return __first; _ForwardIterator __result = __first; ++__first; for(; __first != __last; ++__first) if(!(*__first == __value)) { *__result = _GLIBCXX_MOVE(*__first); ++__result; } return __result; } /** * @brief Remove elements from a sequence using a predicate. * @ingroup mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @param pred A predicate. * @return An iterator designating the end of the resulting sequence. * * All elements for which @p pred returns true are removed from the range * @p [first,last). * * remove_if() is stable, so the relative order of elements that are * not removed is unchanged. * * Elements between the end of the resulting sequence and @p last * are still present, but their value is unspecified. */ template _ForwardIterator remove_if(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); __first = _GLIBCXX_STD_A::find_if(__first, __last, __pred); if(__first == __last) return __first; _ForwardIterator __result = __first; ++__first; for(; __first != __last; ++__first) if(!bool(__pred(*__first))) { *__result = _GLIBCXX_MOVE(*__first); ++__result; } return __result; } /** * @brief Remove consecutive duplicate values from a sequence. * @ingroup mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @return An iterator designating the end of the resulting sequence. * * Removes all but the first element from each group of consecutive * values that compare equal. * unique() is stable, so the relative order of elements that are * not removed is unchanged. * Elements between the end of the resulting sequence and @p last * are still present, but their value is unspecified. */ template _ForwardIterator unique(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_EqualityComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); // Skip the beginning, if already unique. __first = _GLIBCXX_STD_A::adjacent_find(__first, __last); if (__first == __last) return __last; // Do the real copy work. _ForwardIterator __dest = __first; ++__first; while (++__first != __last) if (!(*__dest == *__first)) *++__dest = _GLIBCXX_MOVE(*__first); return ++__dest; } /** * @brief Remove consecutive values from a sequence using a predicate. * @ingroup mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @param binary_pred A binary predicate. * @return An iterator designating the end of the resulting sequence. * * Removes all but the first element from each group of consecutive * values for which @p binary_pred returns true. * unique() is stable, so the relative order of elements that are * not removed is unchanged. * Elements between the end of the resulting sequence and @p last * are still present, but their value is unspecified. */ template _ForwardIterator unique(_ForwardIterator __first, _ForwardIterator __last, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); // Skip the beginning, if already unique. __first = _GLIBCXX_STD_A::adjacent_find(__first, __last, __binary_pred); if (__first == __last) return __last; // Do the real copy work. _ForwardIterator __dest = __first; ++__first; while (++__first != __last) if (!bool(__binary_pred(*__dest, *__first))) *++__dest = _GLIBCXX_MOVE(*__first); return ++__dest; } /** * This is an uglified unique_copy(_InputIterator, _InputIterator, * _OutputIterator) * overloaded for forward iterators and output iterator as result. */ template _OutputIterator __unique_copy(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, forward_iterator_tag, output_iterator_tag) { // concept requirements -- taken care of in dispatching function _ForwardIterator __next = __first; *__result = *__first; while (++__next != __last) if (!(*__first == *__next)) { __first = __next; *++__result = *__first; } return ++__result; } /** * This is an uglified unique_copy(_InputIterator, _InputIterator, * _OutputIterator) * overloaded for input iterators and output iterator as result. */ template _OutputIterator __unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, input_iterator_tag, output_iterator_tag) { // concept requirements -- taken care of in dispatching function typename iterator_traits<_InputIterator>::value_type __value = *__first; *__result = __value; while (++__first != __last) if (!(__value == *__first)) { __value = *__first; *++__result = __value; } return ++__result; } /** * This is an uglified unique_copy(_InputIterator, _InputIterator, * _OutputIterator) * overloaded for input iterators and forward iterator as result. */ template _ForwardIterator __unique_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, input_iterator_tag, forward_iterator_tag) { // concept requirements -- taken care of in dispatching function *__result = *__first; while (++__first != __last) if (!(*__result == *__first)) *++__result = *__first; return ++__result; } /** * This is an uglified * unique_copy(_InputIterator, _InputIterator, _OutputIterator, * _BinaryPredicate) * overloaded for forward iterators and output iterator as result. */ template _OutputIterator __unique_copy(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, _BinaryPredicate __binary_pred, forward_iterator_tag, output_iterator_tag) { // concept requirements -- iterators already checked __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) _ForwardIterator __next = __first; *__result = *__first; while (++__next != __last) if (!bool(__binary_pred(*__first, *__next))) { __first = __next; *++__result = *__first; } return ++__result; } /** * This is an uglified * unique_copy(_InputIterator, _InputIterator, _OutputIterator, * _BinaryPredicate) * overloaded for input iterators and output iterator as result. */ template _OutputIterator __unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _BinaryPredicate __binary_pred, input_iterator_tag, output_iterator_tag) { // concept requirements -- iterators already checked __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_InputIterator>::value_type, typename iterator_traits<_InputIterator>::value_type>) typename iterator_traits<_InputIterator>::value_type __value = *__first; *__result = __value; while (++__first != __last) if (!bool(__binary_pred(__value, *__first))) { __value = *__first; *++__result = __value; } return ++__result; } /** * This is an uglified * unique_copy(_InputIterator, _InputIterator, _OutputIterator, * _BinaryPredicate) * overloaded for input iterators and forward iterator as result. */ template _ForwardIterator __unique_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _BinaryPredicate __binary_pred, input_iterator_tag, forward_iterator_tag) { // concept requirements -- iterators already checked __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_InputIterator>::value_type>) *__result = *__first; while (++__first != __last) if (!bool(__binary_pred(*__result, *__first))) *++__result = *__first; return ++__result; } /** * This is an uglified reverse(_BidirectionalIterator, * _BidirectionalIterator) * overloaded for bidirectional iterators. */ template void __reverse(_BidirectionalIterator __first, _BidirectionalIterator __last, bidirectional_iterator_tag) { while (true) if (__first == __last || __first == --__last) return; else { std::iter_swap(__first, __last); ++__first; } } /** * This is an uglified reverse(_BidirectionalIterator, * _BidirectionalIterator) * overloaded for random access iterators. */ template void __reverse(_RandomAccessIterator __first, _RandomAccessIterator __last, random_access_iterator_tag) { if (__first == __last) return; --__last; while (__first < __last) { std::iter_swap(__first, __last); ++__first; --__last; } } /** * @brief Reverse a sequence. * @ingroup mutating_algorithms * @param first A bidirectional iterator. * @param last A bidirectional iterator. * @return reverse() returns no value. * * Reverses the order of the elements in the range @p [first,last), * so that the first element becomes the last etc. * For every @c i such that @p 0<=i<=(last-first)/2), @p reverse() * swaps @p *(first+i) and @p *(last-(i+1)) */ template inline void reverse(_BidirectionalIterator __first, _BidirectionalIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_requires_valid_range(__first, __last); std::__reverse(__first, __last, std::__iterator_category(__first)); } /** * @brief Copy a sequence, reversing its elements. * @ingroup mutating_algorithms * @param first A bidirectional iterator. * @param last A bidirectional iterator. * @param result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies the elements in the range @p [first,last) to the range * @p [result,result+(last-first)) such that the order of the * elements is reversed. * For every @c i such that @p 0<=i<=(last-first), @p reverse_copy() * performs the assignment @p *(result+(last-first)-i) = *(first+i). * The ranges @p [first,last) and @p [result,result+(last-first)) * must not overlap. */ template _OutputIterator reverse_copy(_BidirectionalIterator __first, _BidirectionalIterator __last, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); while (__first != __last) { --__last; *__result = *__last; ++__result; } return __result; } /** * This is a helper function for the rotate algorithm specialized on RAIs. * It returns the greatest common divisor of two integer values. */ template _EuclideanRingElement __gcd(_EuclideanRingElement __m, _EuclideanRingElement __n) { while (__n != 0) { _EuclideanRingElement __t = __m % __n; __m = __n; __n = __t; } return __m; } /// This is a helper function for the rotate algorithm. template void __rotate(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, forward_iterator_tag) { if (__first == __middle || __last == __middle) return; _ForwardIterator __first2 = __middle; do { std::iter_swap(__first, __first2); ++__first; ++__first2; if (__first == __middle) __middle = __first2; } while (__first2 != __last); __first2 = __middle; while (__first2 != __last) { std::iter_swap(__first, __first2); ++__first; ++__first2; if (__first == __middle) __middle = __first2; else if (__first2 == __last) __first2 = __middle; } } /// This is a helper function for the rotate algorithm. template void __rotate(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, bidirectional_iterator_tag) { // concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>) if (__first == __middle || __last == __middle) return; std::__reverse(__first, __middle, bidirectional_iterator_tag()); std::__reverse(__middle, __last, bidirectional_iterator_tag()); while (__first != __middle && __middle != __last) { std::iter_swap(__first, --__last); ++__first; } if (__first == __middle) std::__reverse(__middle, __last, bidirectional_iterator_tag()); else std::__reverse(__first, __middle, bidirectional_iterator_tag()); } /// This is a helper function for the rotate algorithm. template void __rotate(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, random_access_iterator_tag) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) if (__first == __middle || __last == __middle) return; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance; typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; _Distance __n = __last - __first; _Distance __k = __middle - __first; if (__k == __n - __k) { std::swap_ranges(__first, __middle, __middle); return; } _RandomAccessIterator __p = __first; for (;;) { if (__k < __n - __k) { if (__is_pod(_ValueType) && __k == 1) { _ValueType __t = _GLIBCXX_MOVE(*__p); _GLIBCXX_MOVE3(__p + 1, __p + __n, __p); *(__p + __n - 1) = _GLIBCXX_MOVE(__t); return; } _RandomAccessIterator __q = __p + __k; for (_Distance __i = 0; __i < __n - __k; ++ __i) { std::iter_swap(__p, __q); ++__p; ++__q; } __n %= __k; if (__n == 0) return; std::swap(__n, __k); __k = __n - __k; } else { __k = __n - __k; if (__is_pod(_ValueType) && __k == 1) { _ValueType __t = _GLIBCXX_MOVE(*(__p + __n - 1)); _GLIBCXX_MOVE_BACKWARD3(__p, __p + __n - 1, __p + __n); *__p = _GLIBCXX_MOVE(__t); return; } _RandomAccessIterator __q = __p + __n; __p = __q - __k; for (_Distance __i = 0; __i < __n - __k; ++ __i) { --__p; --__q; std::iter_swap(__p, __q); } __n %= __k; if (__n == 0) return; std::swap(__n, __k); } } } /** * @brief Rotate the elements of a sequence. * @ingroup mutating_algorithms * @param first A forward iterator. * @param middle A forward iterator. * @param last A forward iterator. * @return Nothing. * * Rotates the elements of the range @p [first,last) by @p (middle-first) * positions so that the element at @p middle is moved to @p first, the * element at @p middle+1 is moved to @first+1 and so on for each element * in the range @p [first,last). * * This effectively swaps the ranges @p [first,middle) and * @p [middle,last). * * Performs @p *(first+(n+(last-middle))%(last-first))=*(first+n) for * each @p n in the range @p [0,last-first). */ template inline void rotate(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last); typedef typename iterator_traits<_ForwardIterator>::iterator_category _IterType; std::__rotate(__first, __middle, __last, _IterType()); } /** * @brief Copy a sequence, rotating its elements. * @ingroup mutating_algorithms * @param first A forward iterator. * @param middle A forward iterator. * @param last A forward iterator. * @param result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies the elements of the range @p [first,last) to the range * beginning at @result, rotating the copied elements by @p (middle-first) * positions so that the element at @p middle is moved to @p result, the * element at @p middle+1 is moved to @result+1 and so on for each element * in the range @p [first,last). * * Performs @p *(result+(n+(last-middle))%(last-first))=*(first+n) for * each @p n in the range @p [0,last-first). */ template _OutputIterator rotate_copy(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last); return std::copy(__first, __middle, std::copy(__middle, __last, __result)); } /// This is a helper function... template _ForwardIterator __partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, forward_iterator_tag) { if (__first == __last) return __first; while (__pred(*__first)) if (++__first == __last) return __first; _ForwardIterator __next = __first; while (++__next != __last) if (__pred(*__next)) { std::iter_swap(__first, __next); ++__first; } return __first; } /// This is a helper function... template _BidirectionalIterator __partition(_BidirectionalIterator __first, _BidirectionalIterator __last, _Predicate __pred, bidirectional_iterator_tag) { while (true) { while (true) if (__first == __last) return __first; else if (__pred(*__first)) ++__first; else break; --__last; while (true) if (__first == __last) return __first; else if (!bool(__pred(*__last))) --__last; else break; std::iter_swap(__first, __last); ++__first; } } // partition /// This is a helper function... template _ForwardIterator __inplace_stable_partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, _Distance __len) { if (__len == 1) return __pred(*__first) ? __last : __first; _ForwardIterator __middle = __first; std::advance(__middle, __len / 2); _ForwardIterator __begin = std::__inplace_stable_partition(__first, __middle, __pred, __len / 2); _ForwardIterator __end = std::__inplace_stable_partition(__middle, __last, __pred, __len - __len / 2); std::rotate(__begin, __middle, __end); std::advance(__begin, std::distance(__middle, __end)); return __begin; } /// This is a helper function... template _ForwardIterator __stable_partition_adaptive(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, _Distance __len, _Pointer __buffer, _Distance __buffer_size) { if (__len <= __buffer_size) { _ForwardIterator __result1 = __first; _Pointer __result2 = __buffer; for (; __first != __last; ++__first) if (__pred(*__first)) { *__result1 = _GLIBCXX_MOVE(*__first); ++__result1; } else { *__result2 = _GLIBCXX_MOVE(*__first); ++__result2; } _GLIBCXX_MOVE3(__buffer, __result2, __result1); return __result1; } else { _ForwardIterator __middle = __first; std::advance(__middle, __len / 2); _ForwardIterator __begin = std::__stable_partition_adaptive(__first, __middle, __pred, __len / 2, __buffer, __buffer_size); _ForwardIterator __end = std::__stable_partition_adaptive(__middle, __last, __pred, __len - __len / 2, __buffer, __buffer_size); std::rotate(__begin, __middle, __end); std::advance(__begin, std::distance(__middle, __end)); return __begin; } } /** * @brief Move elements for which a predicate is true to the beginning * of a sequence, preserving relative ordering. * @ingroup mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @param pred A predicate functor. * @return An iterator @p middle such that @p pred(i) is true for each * iterator @p i in the range @p [first,middle) and false for each @p i * in the range @p [middle,last). * * Performs the same function as @p partition() with the additional * guarantee that the relative ordering of elements in each group is * preserved, so any two elements @p x and @p y in the range * @p [first,last) such that @p pred(x)==pred(y) will have the same * relative ordering after calling @p stable_partition(). */ template _ForwardIterator stable_partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __first; else { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; _Temporary_buffer<_ForwardIterator, _ValueType> __buf(__first, __last); if (__buf.size() > 0) return std::__stable_partition_adaptive(__first, __last, __pred, _DistanceType(__buf.requested_size()), __buf.begin(), _DistanceType(__buf.size())); else return std::__inplace_stable_partition(__first, __last, __pred, _DistanceType(__buf.requested_size())); } } /// This is a helper function for the sort routines. template void __heap_select(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last) { std::make_heap(__first, __middle); for (_RandomAccessIterator __i = __middle; __i < __last; ++__i) if (*__i < *__first) std::__pop_heap(__first, __middle, __i); } /// This is a helper function for the sort routines. template void __heap_select(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp) { std::make_heap(__first, __middle, __comp); for (_RandomAccessIterator __i = __middle; __i < __last; ++__i) if (__comp(*__i, *__first)) std::__pop_heap(__first, __middle, __i, __comp); } // partial_sort /** * @brief Copy the smallest elements of a sequence. * @ingroup sorting_algorithms * @param first An iterator. * @param last Another iterator. * @param result_first A random-access iterator. * @param result_last Another random-access iterator. * @return An iterator indicating the end of the resulting sequence. * * Copies and sorts the smallest N values from the range @p [first,last) * to the range beginning at @p result_first, where the number of * elements to be copied, @p N, is the smaller of @p (last-first) and * @p (result_last-result_first). * After the sort if @p i and @j are iterators in the range * @p [result_first,result_first+N) such that @i precedes @j then * @p *j<*i is false. * The value returned is @p result_first+N. */ template _RandomAccessIterator partial_sort_copy(_InputIterator __first, _InputIterator __last, _RandomAccessIterator __result_first, _RandomAccessIterator __result_last) { typedef typename iterator_traits<_InputIterator>::value_type _InputValueType; typedef typename iterator_traits<_RandomAccessIterator>::value_type _OutputValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_ConvertibleConcept<_InputValueType, _OutputValueType>) __glibcxx_function_requires(_LessThanOpConcept<_InputValueType, _OutputValueType>) __glibcxx_function_requires(_LessThanComparableConcept<_OutputValueType>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_valid_range(__result_first, __result_last); if (__result_first == __result_last) return __result_last; _RandomAccessIterator __result_real_last = __result_first; while(__first != __last && __result_real_last != __result_last) { *__result_real_last = *__first; ++__result_real_last; ++__first; } std::make_heap(__result_first, __result_real_last); while (__first != __last) { if (*__first < *__result_first) std::__adjust_heap(__result_first, _DistanceType(0), _DistanceType(__result_real_last - __result_first), _InputValueType(*__first)); ++__first; } std::sort_heap(__result_first, __result_real_last); return __result_real_last; } /** * @brief Copy the smallest elements of a sequence using a predicate for * comparison. * @ingroup sorting_algorithms * @param first An input iterator. * @param last Another input iterator. * @param result_first A random-access iterator. * @param result_last Another random-access iterator. * @param comp A comparison functor. * @return An iterator indicating the end of the resulting sequence. * * Copies and sorts the smallest N values from the range @p [first,last) * to the range beginning at @p result_first, where the number of * elements to be copied, @p N, is the smaller of @p (last-first) and * @p (result_last-result_first). * After the sort if @p i and @j are iterators in the range * @p [result_first,result_first+N) such that @i precedes @j then * @p comp(*j,*i) is false. * The value returned is @p result_first+N. */ template _RandomAccessIterator partial_sort_copy(_InputIterator __first, _InputIterator __last, _RandomAccessIterator __result_first, _RandomAccessIterator __result_last, _Compare __comp) { typedef typename iterator_traits<_InputIterator>::value_type _InputValueType; typedef typename iterator_traits<_RandomAccessIterator>::value_type _OutputValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_ConvertibleConcept<_InputValueType, _OutputValueType>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _InputValueType, _OutputValueType>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _OutputValueType, _OutputValueType>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_valid_range(__result_first, __result_last); if (__result_first == __result_last) return __result_last; _RandomAccessIterator __result_real_last = __result_first; while(__first != __last && __result_real_last != __result_last) { *__result_real_last = *__first; ++__result_real_last; ++__first; } std::make_heap(__result_first, __result_real_last, __comp); while (__first != __last) { if (__comp(*__first, *__result_first)) std::__adjust_heap(__result_first, _DistanceType(0), _DistanceType(__result_real_last - __result_first), _InputValueType(*__first), __comp); ++__first; } std::sort_heap(__result_first, __result_real_last, __comp); return __result_real_last; } /// This is a helper function for the sort routine. template void __unguarded_linear_insert(_RandomAccessIterator __last) { typename iterator_traits<_RandomAccessIterator>::value_type __val = _GLIBCXX_MOVE(*__last); _RandomAccessIterator __next = __last; --__next; while (__val < *__next) { *__last = _GLIBCXX_MOVE(*__next); __last = __next; --__next; } *__last = _GLIBCXX_MOVE(__val); } /// This is a helper function for the sort routine. template void __unguarded_linear_insert(_RandomAccessIterator __last, _Compare __comp) { typename iterator_traits<_RandomAccessIterator>::value_type __val = _GLIBCXX_MOVE(*__last); _RandomAccessIterator __next = __last; --__next; while (__comp(__val, *__next)) { *__last = _GLIBCXX_MOVE(*__next); __last = __next; --__next; } *__last = _GLIBCXX_MOVE(__val); } /// This is a helper function for the sort routine. template void __insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { if (__first == __last) return; for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) { if (*__i < *__first) { typename iterator_traits<_RandomAccessIterator>::value_type __val = _GLIBCXX_MOVE(*__i); _GLIBCXX_MOVE_BACKWARD3(__first, __i, __i + 1); *__first = _GLIBCXX_MOVE(__val); } else std::__unguarded_linear_insert(__i); } } /// This is a helper function for the sort routine. template void __insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__first == __last) return; for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) { if (__comp(*__i, *__first)) { typename iterator_traits<_RandomAccessIterator>::value_type __val = _GLIBCXX_MOVE(*__i); _GLIBCXX_MOVE_BACKWARD3(__first, __i, __i + 1); *__first = _GLIBCXX_MOVE(__val); } else std::__unguarded_linear_insert(__i, __comp); } } /// This is a helper function for the sort routine. template inline void __unguarded_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; for (_RandomAccessIterator __i = __first; __i != __last; ++__i) std::__unguarded_linear_insert(__i); } /// This is a helper function for the sort routine. template inline void __unguarded_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; for (_RandomAccessIterator __i = __first; __i != __last; ++__i) std::__unguarded_linear_insert(__i, __comp); } /** * @doctodo * This controls some aspect of the sort routines. */ enum { _S_threshold = 16 }; /// This is a helper function for the sort routine. template void __final_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { if (__last - __first > int(_S_threshold)) { std::__insertion_sort(__first, __first + int(_S_threshold)); std::__unguarded_insertion_sort(__first + int(_S_threshold), __last); } else std::__insertion_sort(__first, __last); } /// This is a helper function for the sort routine. template void __final_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__last - __first > int(_S_threshold)) { std::__insertion_sort(__first, __first + int(_S_threshold), __comp); std::__unguarded_insertion_sort(__first + int(_S_threshold), __last, __comp); } else std::__insertion_sort(__first, __last, __comp); } /// This is a helper function... template _RandomAccessIterator __unguarded_partition(_RandomAccessIterator __first, _RandomAccessIterator __last, const _Tp& __pivot) { while (true) { while (*__first < __pivot) ++__first; --__last; while (__pivot < *__last) --__last; if (!(__first < __last)) return __first; std::iter_swap(__first, __last); ++__first; } } /// This is a helper function... template _RandomAccessIterator __unguarded_partition(_RandomAccessIterator __first, _RandomAccessIterator __last, const _Tp& __pivot, _Compare __comp) { while (true) { while (__comp(*__first, __pivot)) ++__first; --__last; while (__comp(__pivot, *__last)) --__last; if (!(__first < __last)) return __first; std::iter_swap(__first, __last); ++__first; } } /// This is a helper function... template inline _RandomAccessIterator __unguarded_partition_pivot(_RandomAccessIterator __first, _RandomAccessIterator __last) { _RandomAccessIterator __mid = __first + (__last - __first) / 2; std::__move_median_first(__first, __mid, (__last - 1)); return std::__unguarded_partition(__first + 1, __last, *__first); } /// This is a helper function... template inline _RandomAccessIterator __unguarded_partition_pivot(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { _RandomAccessIterator __mid = __first + (__last - __first) / 2; std::__move_median_first(__first, __mid, (__last - 1), __comp); return std::__unguarded_partition(__first + 1, __last, *__first, __comp); } /// This is a helper function for the sort routine. template void __introsort_loop(_RandomAccessIterator __first, _RandomAccessIterator __last, _Size __depth_limit) { while (__last - __first > int(_S_threshold)) { if (__depth_limit == 0) { _GLIBCXX_STD_A::partial_sort(__first, __last, __last); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition_pivot(__first, __last); std::__introsort_loop(__cut, __last, __depth_limit); __last = __cut; } } /// This is a helper function for the sort routine. template void __introsort_loop(_RandomAccessIterator __first, _RandomAccessIterator __last, _Size __depth_limit, _Compare __comp) { while (__last - __first > int(_S_threshold)) { if (__depth_limit == 0) { _GLIBCXX_STD_A::partial_sort(__first, __last, __last, __comp); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition_pivot(__first, __last, __comp); std::__introsort_loop(__cut, __last, __depth_limit, __comp); __last = __cut; } } // sort template void __introselect(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Size __depth_limit) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; while (__last - __first > 3) { if (__depth_limit == 0) { std::__heap_select(__first, __nth + 1, __last); // Place the nth largest element in its final position. std::iter_swap(__first, __nth); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition_pivot(__first, __last); if (__cut <= __nth) __first = __cut; else __last = __cut; } std::__insertion_sort(__first, __last); } template void __introselect(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Size __depth_limit, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; while (__last - __first > 3) { if (__depth_limit == 0) { std::__heap_select(__first, __nth + 1, __last, __comp); // Place the nth largest element in its final position. std::iter_swap(__first, __nth); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition_pivot(__first, __last, __comp); if (__cut <= __nth) __first = __cut; else __last = __cut; } std::__insertion_sort(__first, __last, __comp); } // nth_element // lower_bound moved to stl_algobase.h /** * @brief Finds the first position in which @a val could be inserted * without changing the ordering. * @ingroup binary_search_algorithms * @param first An iterator. * @param last Another iterator. * @param val The search term. * @param comp A functor to use for comparisons. * @return An iterator pointing to the first element not less * than @a val, or end() if every element is less * than @a val. * @ingroup binary_search_algorithms * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template _ForwardIterator lower_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _Tp>) __glibcxx_requires_partitioned_lower_pred(__first, __last, __val, __comp); _DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (__comp(*__middle, __val)) { __first = __middle; ++__first; __len = __len - __half - 1; } else __len = __half; } return __first; } /** * @brief Finds the last position in which @a val could be inserted * without changing the ordering. * @ingroup binary_search_algorithms * @param first An iterator. * @param last Another iterator. * @param val The search term. * @return An iterator pointing to the first element greater than @a val, * or end() if no elements are greater than @a val. * @ingroup binary_search_algorithms */ template _ForwardIterator upper_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanOpConcept<_Tp, _ValueType>) __glibcxx_requires_partitioned_upper(__first, __last, __val); _DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (__val < *__middle) __len = __half; else { __first = __middle; ++__first; __len = __len - __half - 1; } } return __first; } /** * @brief Finds the last position in which @a val could be inserted * without changing the ordering. * @ingroup binary_search_algorithms * @param first An iterator. * @param last Another iterator. * @param val The search term. * @param comp A functor to use for comparisons. * @return An iterator pointing to the first element greater than @a val, * or end() if no elements are greater than @a val. * @ingroup binary_search_algorithms * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template _ForwardIterator upper_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp, _ValueType>) __glibcxx_requires_partitioned_upper_pred(__first, __last, __val, __comp); _DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (__comp(__val, *__middle)) __len = __half; else { __first = __middle; ++__first; __len = __len - __half - 1; } } return __first; } /** * @brief Finds the largest subrange in which @a val could be inserted * at any place in it without changing the ordering. * @ingroup binary_search_algorithms * @param first An iterator. * @param last Another iterator. * @param val The search term. * @return An pair of iterators defining the subrange. * @ingroup binary_search_algorithms * * This is equivalent to * @code * std::make_pair(lower_bound(first, last, val), * upper_bound(first, last, val)) * @endcode * but does not actually call those functions. */ template pair<_ForwardIterator, _ForwardIterator> equal_range(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType, _Tp>) __glibcxx_function_requires(_LessThanOpConcept<_Tp, _ValueType>) __glibcxx_requires_partitioned_lower(__first, __last, __val); __glibcxx_requires_partitioned_upper(__first, __last, __val); _DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (*__middle < __val) { __first = __middle; ++__first; __len = __len - __half - 1; } else if (__val < *__middle) __len = __half; else { _ForwardIterator __left = std::lower_bound(__first, __middle, __val); std::advance(__first, __len); _ForwardIterator __right = std::upper_bound(++__middle, __first, __val); return pair<_ForwardIterator, _ForwardIterator>(__left, __right); } } return pair<_ForwardIterator, _ForwardIterator>(__first, __first); } /** * @brief Finds the largest subrange in which @a val could be inserted * at any place in it without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @param comp A functor to use for comparisons. * @return An pair of iterators defining the subrange. * @ingroup binary_search_algorithms * * This is equivalent to * @code * std::make_pair(lower_bound(first, last, val, comp), * upper_bound(first, last, val, comp)) * @endcode * but does not actually call those functions. */ template pair<_ForwardIterator, _ForwardIterator> equal_range(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _Tp>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp, _ValueType>) __glibcxx_requires_partitioned_lower_pred(__first, __last, __val, __comp); __glibcxx_requires_partitioned_upper_pred(__first, __last, __val, __comp); _DistanceType __len = std::distance(__first, __last); while (__len > 0) { _DistanceType __half = __len >> 1; _ForwardIterator __middle = __first; std::advance(__middle, __half); if (__comp(*__middle, __val)) { __first = __middle; ++__first; __len = __len - __half - 1; } else if (__comp(__val, *__middle)) __len = __half; else { _ForwardIterator __left = std::lower_bound(__first, __middle, __val, __comp); std::advance(__first, __len); _ForwardIterator __right = std::upper_bound(++__middle, __first, __val, __comp); return pair<_ForwardIterator, _ForwardIterator>(__left, __right); } } return pair<_ForwardIterator, _ForwardIterator>(__first, __first); } /** * @brief Determines whether an element exists in a range. * @ingroup binary_search_algorithms * @param first An iterator. * @param last Another iterator. * @param val The search term. * @return True if @a val (or its equivalent) is in [@a first,@a last ]. * * Note that this does not actually return an iterator to @a val. For * that, use std::find or a container's specialized find member functions. */ template bool binary_search(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanOpConcept<_Tp, _ValueType>) __glibcxx_requires_partitioned_lower(__first, __last, __val); __glibcxx_requires_partitioned_upper(__first, __last, __val); _ForwardIterator __i = std::lower_bound(__first, __last, __val); return __i != __last && !(__val < *__i); } /** * @brief Determines whether an element exists in a range. * @ingroup binary_search_algorithms * @param first An iterator. * @param last Another iterator. * @param val The search term. * @param comp A functor to use for comparisons. * @return True if @a val (or its equivalent) is in [@a first,@a last ]. * * Note that this does not actually return an iterator to @a val. For * that, use std::find or a container's specialized find member functions. * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template bool binary_search(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp, _ValueType>) __glibcxx_requires_partitioned_lower_pred(__first, __last, __val, __comp); __glibcxx_requires_partitioned_upper_pred(__first, __last, __val, __comp); _ForwardIterator __i = std::lower_bound(__first, __last, __val, __comp); return __i != __last && !bool(__comp(__val, *__i)); } // merge /// This is a helper function for the merge routines. template _BidirectionalIterator3 __merge_backward(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, _BidirectionalIterator3 __result) { if (__first1 == __last1) return std::copy_backward(__first2, __last2, __result); if (__first2 == __last2) return std::copy_backward(__first1, __last1, __result); --__last1; --__last2; while (true) { if (*__last2 < *__last1) { *--__result = *__last1; if (__first1 == __last1) return std::copy_backward(__first2, ++__last2, __result); --__last1; } else { *--__result = *__last2; if (__first2 == __last2) return std::copy_backward(__first1, ++__last1, __result); --__last2; } } } /// This is a helper function for the merge routines. template _BidirectionalIterator3 __merge_backward(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, _BidirectionalIterator3 __result, _Compare __comp) { if (__first1 == __last1) return std::copy_backward(__first2, __last2, __result); if (__first2 == __last2) return std::copy_backward(__first1, __last1, __result); --__last1; --__last2; while (true) { if (__comp(*__last2, *__last1)) { *--__result = *__last1; if (__first1 == __last1) return std::copy_backward(__first2, ++__last2, __result); --__last1; } else { *--__result = *__last2; if (__first2 == __last2) return std::copy_backward(__first1, ++__last1, __result); --__last2; } } } /// This is a helper function for the merge routines. template _BidirectionalIterator1 __rotate_adaptive(_BidirectionalIterator1 __first, _BidirectionalIterator1 __middle, _BidirectionalIterator1 __last, _Distance __len1, _Distance __len2, _BidirectionalIterator2 __buffer, _Distance __buffer_size) { _BidirectionalIterator2 __buffer_end; if (__len1 > __len2 && __len2 <= __buffer_size) { __buffer_end = _GLIBCXX_MOVE3(__middle, __last, __buffer); _GLIBCXX_MOVE_BACKWARD3(__first, __middle, __last); return _GLIBCXX_MOVE3(__buffer, __buffer_end, __first); } else if (__len1 <= __buffer_size) { __buffer_end = _GLIBCXX_MOVE3(__first, __middle, __buffer); _GLIBCXX_MOVE3(__middle, __last, __first); return _GLIBCXX_MOVE_BACKWARD3(__buffer, __buffer_end, __last); } else { std::rotate(__first, __middle, __last); std::advance(__first, std::distance(__middle, __last)); return __first; } } /// This is a helper function for the merge routines. template void __merge_adaptive(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2, _Pointer __buffer, _Distance __buffer_size) { if (__len1 <= __len2 && __len1 <= __buffer_size) { _Pointer __buffer_end = _GLIBCXX_MOVE3(__first, __middle, __buffer); _GLIBCXX_STD_A::merge(_GLIBCXX_MAKE_MOVE_ITERATOR(__buffer), _GLIBCXX_MAKE_MOVE_ITERATOR(__buffer_end), _GLIBCXX_MAKE_MOVE_ITERATOR(__middle), _GLIBCXX_MAKE_MOVE_ITERATOR(__last), __first); } else if (__len2 <= __buffer_size) { _Pointer __buffer_end = _GLIBCXX_MOVE3(__middle, __last, __buffer); std::__merge_backward(_GLIBCXX_MAKE_MOVE_ITERATOR(__first), _GLIBCXX_MAKE_MOVE_ITERATOR(__middle), _GLIBCXX_MAKE_MOVE_ITERATOR(__buffer), _GLIBCXX_MAKE_MOVE_ITERATOR(__buffer_end), __last); } else { _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut); __len11 = std::distance(__first, __first_cut); } _BidirectionalIterator __new_middle = std::__rotate_adaptive(__first_cut, __middle, __second_cut, __len1 - __len11, __len22, __buffer, __buffer_size); std::__merge_adaptive(__first, __first_cut, __new_middle, __len11, __len22, __buffer, __buffer_size); std::__merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __buffer, __buffer_size); } } /// This is a helper function for the merge routines. template void __merge_adaptive(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2, _Pointer __buffer, _Distance __buffer_size, _Compare __comp) { if (__len1 <= __len2 && __len1 <= __buffer_size) { _Pointer __buffer_end = _GLIBCXX_MOVE3(__first, __middle, __buffer); _GLIBCXX_STD_A::merge(_GLIBCXX_MAKE_MOVE_ITERATOR(__buffer), _GLIBCXX_MAKE_MOVE_ITERATOR(__buffer_end), _GLIBCXX_MAKE_MOVE_ITERATOR(__middle), _GLIBCXX_MAKE_MOVE_ITERATOR(__last), __first, __comp); } else if (__len2 <= __buffer_size) { _Pointer __buffer_end = _GLIBCXX_MOVE3(__middle, __last, __buffer); std::__merge_backward(_GLIBCXX_MAKE_MOVE_ITERATOR(__first), _GLIBCXX_MAKE_MOVE_ITERATOR(__middle), _GLIBCXX_MAKE_MOVE_ITERATOR(__buffer), _GLIBCXX_MAKE_MOVE_ITERATOR(__buffer_end), __last,__comp); } else { _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut, __comp); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut, __comp); __len11 = std::distance(__first, __first_cut); } _BidirectionalIterator __new_middle = std::__rotate_adaptive(__first_cut, __middle, __second_cut, __len1 - __len11, __len22, __buffer, __buffer_size); std::__merge_adaptive(__first, __first_cut, __new_middle, __len11, __len22, __buffer, __buffer_size, __comp); std::__merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __buffer, __buffer_size, __comp); } } /// This is a helper function for the merge routines. template void __merge_without_buffer(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2) { if (__len1 == 0 || __len2 == 0) return; if (__len1 + __len2 == 2) { if (*__middle < *__first) std::iter_swap(__first, __middle); return; } _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut); __len11 = std::distance(__first, __first_cut); } std::rotate(__first_cut, __middle, __second_cut); _BidirectionalIterator __new_middle = __first_cut; std::advance(__new_middle, std::distance(__middle, __second_cut)); std::__merge_without_buffer(__first, __first_cut, __new_middle, __len11, __len22); std::__merge_without_buffer(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22); } /// This is a helper function for the merge routines. template void __merge_without_buffer(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2, _Compare __comp) { if (__len1 == 0 || __len2 == 0) return; if (__len1 + __len2 == 2) { if (__comp(*__middle, *__first)) std::iter_swap(__first, __middle); return; } _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut, __comp); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut, __comp); __len11 = std::distance(__first, __first_cut); } std::rotate(__first_cut, __middle, __second_cut); _BidirectionalIterator __new_middle = __first_cut; std::advance(__new_middle, std::distance(__middle, __second_cut)); std::__merge_without_buffer(__first, __first_cut, __new_middle, __len11, __len22, __comp); std::__merge_without_buffer(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __comp); } /** * @brief Merges two sorted ranges in place. * @ingroup sorting_algorithms * @param first An iterator. * @param middle Another iterator. * @param last Another iterator. * @return Nothing. * * Merges two sorted and consecutive ranges, [first,middle) and * [middle,last), and puts the result in [first,last). The output will * be sorted. The sort is @e stable, that is, for equivalent * elements in the two ranges, elements from the first range will always * come before elements from the second. * * If enough additional memory is available, this takes (last-first)-1 * comparisons. Otherwise an NlogN algorithm is used, where N is * distance(first,last). */ template void inplace_merge(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last) { typedef typename iterator_traits<_BidirectionalIterator>::value_type _ValueType; typedef typename iterator_traits<_BidirectionalIterator>::difference_type _DistanceType; // concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>) __glibcxx_requires_sorted(__first, __middle); __glibcxx_requires_sorted(__middle, __last); if (__first == __middle || __middle == __last) return; _DistanceType __len1 = std::distance(__first, __middle); _DistanceType __len2 = std::distance(__middle, __last); _Temporary_buffer<_BidirectionalIterator, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__merge_without_buffer(__first, __middle, __last, __len1, __len2); else std::__merge_adaptive(__first, __middle, __last, __len1, __len2, __buf.begin(), _DistanceType(__buf.size())); } /** * @brief Merges two sorted ranges in place. * @ingroup sorting_algorithms * @param first An iterator. * @param middle Another iterator. * @param last Another iterator. * @param comp A functor to use for comparisons. * @return Nothing. * * Merges two sorted and consecutive ranges, [first,middle) and * [middle,last), and puts the result in [first,last). The output will * be sorted. The sort is @e stable, that is, for equivalent * elements in the two ranges, elements from the first range will always * come before elements from the second. * * If enough additional memory is available, this takes (last-first)-1 * comparisons. Otherwise an NlogN algorithm is used, where N is * distance(first,last). * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template void inplace_merge(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Compare __comp) { typedef typename iterator_traits<_BidirectionalIterator>::value_type _ValueType; typedef typename iterator_traits<_BidirectionalIterator>::difference_type _DistanceType; // concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _ValueType>) __glibcxx_requires_sorted_pred(__first, __middle, __comp); __glibcxx_requires_sorted_pred(__middle, __last, __comp); if (__first == __middle || __middle == __last) return; const _DistanceType __len1 = std::distance(__first, __middle); const _DistanceType __len2 = std::distance(__middle, __last); _Temporary_buffer<_BidirectionalIterator, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__merge_without_buffer(__first, __middle, __last, __len1, __len2, __comp); else std::__merge_adaptive(__first, __middle, __last, __len1, __len2, __buf.begin(), _DistanceType(__buf.size()), __comp); } template void __merge_sort_loop(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, _Distance __step_size) { const _Distance __two_step = 2 * __step_size; while (__last - __first >= __two_step) { __result = _GLIBCXX_STD_A::merge( _GLIBCXX_MAKE_MOVE_ITERATOR(__first), _GLIBCXX_MAKE_MOVE_ITERATOR(__first + __step_size), _GLIBCXX_MAKE_MOVE_ITERATOR(__first + __step_size), _GLIBCXX_MAKE_MOVE_ITERATOR(__first + __two_step), __result); __first += __two_step; } __step_size = std::min(_Distance(__last - __first), __step_size); _GLIBCXX_STD_A::merge(_GLIBCXX_MAKE_MOVE_ITERATOR(__first), _GLIBCXX_MAKE_MOVE_ITERATOR(__first + __step_size), _GLIBCXX_MAKE_MOVE_ITERATOR(__first + __step_size), _GLIBCXX_MAKE_MOVE_ITERATOR(__last), __result); } template void __merge_sort_loop(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, _Distance __step_size, _Compare __comp) { const _Distance __two_step = 2 * __step_size; while (__last - __first >= __two_step) { __result = _GLIBCXX_STD_A::merge( _GLIBCXX_MAKE_MOVE_ITERATOR(__first), _GLIBCXX_MAKE_MOVE_ITERATOR(__first + __step_size), _GLIBCXX_MAKE_MOVE_ITERATOR(__first + __step_size), _GLIBCXX_MAKE_MOVE_ITERATOR(__first + __two_step), __result, __comp); __first += __two_step; } __step_size = std::min(_Distance(__last - __first), __step_size); _GLIBCXX_STD_A::merge(_GLIBCXX_MAKE_MOVE_ITERATOR(__first), _GLIBCXX_MAKE_MOVE_ITERATOR(__first + __step_size), _GLIBCXX_MAKE_MOVE_ITERATOR(__first + __step_size), _GLIBCXX_MAKE_MOVE_ITERATOR(__last), __result, __comp); } template void __chunk_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Distance __chunk_size) { while (__last - __first >= __chunk_size) { std::__insertion_sort(__first, __first + __chunk_size); __first += __chunk_size; } std::__insertion_sort(__first, __last); } template void __chunk_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Distance __chunk_size, _Compare __comp) { while (__last - __first >= __chunk_size) { std::__insertion_sort(__first, __first + __chunk_size, __comp); __first += __chunk_size; } std::__insertion_sort(__first, __last, __comp); } enum { _S_chunk_size = 7 }; template void __merge_sort_with_buffer(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer) { typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance; const _Distance __len = __last - __first; const _Pointer __buffer_last = __buffer + __len; _Distance __step_size = _S_chunk_size; std::__chunk_insertion_sort(__first, __last, __step_size); while (__step_size < __len) { std::__merge_sort_loop(__first, __last, __buffer, __step_size); __step_size *= 2; std::__merge_sort_loop(__buffer, __buffer_last, __first, __step_size); __step_size *= 2; } } template void __merge_sort_with_buffer(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance; const _Distance __len = __last - __first; const _Pointer __buffer_last = __buffer + __len; _Distance __step_size = _S_chunk_size; std::__chunk_insertion_sort(__first, __last, __step_size, __comp); while (__step_size < __len) { std::__merge_sort_loop(__first, __last, __buffer, __step_size, __comp); __step_size *= 2; std::__merge_sort_loop(__buffer, __buffer_last, __first, __step_size, __comp); __step_size *= 2; } } template void __stable_sort_adaptive(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Distance __buffer_size) { const _Distance __len = (__last - __first + 1) / 2; const _RandomAccessIterator __middle = __first + __len; if (__len > __buffer_size) { std::__stable_sort_adaptive(__first, __middle, __buffer, __buffer_size); std::__stable_sort_adaptive(__middle, __last, __buffer, __buffer_size); } else { std::__merge_sort_with_buffer(__first, __middle, __buffer); std::__merge_sort_with_buffer(__middle, __last, __buffer); } std::__merge_adaptive(__first, __middle, __last, _Distance(__middle - __first), _Distance(__last - __middle), __buffer, __buffer_size); } template void __stable_sort_adaptive(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Distance __buffer_size, _Compare __comp) { const _Distance __len = (__last - __first + 1) / 2; const _RandomAccessIterator __middle = __first + __len; if (__len > __buffer_size) { std::__stable_sort_adaptive(__first, __middle, __buffer, __buffer_size, __comp); std::__stable_sort_adaptive(__middle, __last, __buffer, __buffer_size, __comp); } else { std::__merge_sort_with_buffer(__first, __middle, __buffer, __comp); std::__merge_sort_with_buffer(__middle, __last, __buffer, __comp); } std::__merge_adaptive(__first, __middle, __last, _Distance(__middle - __first), _Distance(__last - __middle), __buffer, __buffer_size, __comp); } /// This is a helper function for the stable sorting routines. template void __inplace_stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { if (__last - __first < 15) { std::__insertion_sort(__first, __last); return; } _RandomAccessIterator __middle = __first + (__last - __first) / 2; std::__inplace_stable_sort(__first, __middle); std::__inplace_stable_sort(__middle, __last); std::__merge_without_buffer(__first, __middle, __last, __middle - __first, __last - __middle); } /// This is a helper function for the stable sorting routines. template void __inplace_stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__last - __first < 15) { std::__insertion_sort(__first, __last, __comp); return; } _RandomAccessIterator __middle = __first + (__last - __first) / 2; std::__inplace_stable_sort(__first, __middle, __comp); std::__inplace_stable_sort(__middle, __last, __comp); std::__merge_without_buffer(__first, __middle, __last, __middle - __first, __last - __middle, __comp); } // stable_sort // Set algorithms: includes, set_union, set_intersection, set_difference, // set_symmetric_difference. All of these algorithms have the precondition // that their input ranges are sorted and the postcondition that their output // ranges are sorted. /** * @brief Determines whether all elements of a sequence exists in a range. * @param first1 Start of search range. * @param last1 End of search range. * @param first2 Start of sequence * @param last2 End of sequence. * @return True if each element in [first2,last2) is contained in order * within [first1,last1). False otherwise. * @ingroup set_algorithms * * This operation expects both [first1,last1) and [first2,last2) to be * sorted. Searches for the presence of each element in [first2,last2) * within [first1,last1). The iterators over each range only move forward, * so this is a linear algorithm. If an element in [first2,last2) is not * found before the search iterator reaches @a last2, false is returned. */ template bool includes(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_sorted_set(__first1, __last1, __first2); __glibcxx_requires_sorted_set(__first2, __last2, __first1); while (__first1 != __last1 && __first2 != __last2) if (*__first2 < *__first1) return false; else if(*__first1 < *__first2) ++__first1; else ++__first1, ++__first2; return __first2 == __last2; } /** * @brief Determines whether all elements of a sequence exists in a range * using comparison. * @ingroup set_algorithms * @param first1 Start of search range. * @param last1 End of search range. * @param first2 Start of sequence * @param last2 End of sequence. * @param comp Comparison function to use. * @return True if each element in [first2,last2) is contained in order * within [first1,last1) according to comp. False otherwise. * @ingroup set_algorithms * * This operation expects both [first1,last1) and [first2,last2) to be * sorted. Searches for the presence of each element in [first2,last2) * within [first1,last1), using comp to decide. The iterators over each * range only move forward, so this is a linear algorithm. If an element * in [first2,last2) is not found before the search iterator reaches @a * last2, false is returned. */ template bool includes(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType1, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType2, _ValueType1>) __glibcxx_requires_sorted_set_pred(__first1, __last1, __first2, __comp); __glibcxx_requires_sorted_set_pred(__first2, __last2, __first1, __comp); while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first2, *__first1)) return false; else if(__comp(*__first1, *__first2)) ++__first1; else ++__first1, ++__first2; return __first2 == __last2; } // nth_element // merge // set_difference // set_intersection // set_union // stable_sort // set_symmetric_difference // min_element // max_element /** * @brief Permute range into the next @a dictionary ordering. * @ingroup sorting_algorithms * @param first Start of range. * @param last End of range. * @return False if wrapped to first permutation, true otherwise. * * Treats all permutations of the range as a set of @a dictionary sorted * sequences. Permutes the current sequence into the next one of this set. * Returns true if there are more sequences to generate. If the sequence * is the largest of the set, the smallest is generated and false returned. */ template bool next_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIterator __ii = __i; --__i; if (*__i < *__ii) { _BidirectionalIterator __j = __last; while (!(*__i < *--__j)) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } } /** * @brief Permute range into the next @a dictionary ordering using * comparison functor. * @ingroup sorting_algorithms * @param first Start of range. * @param last End of range. * @param comp A comparison functor. * @return False if wrapped to first permutation, true otherwise. * * Treats all permutations of the range [first,last) as a set of * @a dictionary sorted sequences ordered by @a comp. Permutes the current * sequence into the next one of this set. Returns true if there are more * sequences to generate. If the sequence is the largest of the set, the * smallest is generated and false returned. */ template bool next_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_BidirectionalIterator>::value_type, typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIterator __ii = __i; --__i; if (__comp(*__i, *__ii)) { _BidirectionalIterator __j = __last; while (!bool(__comp(*__i, *--__j))) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } } /** * @brief Permute range into the previous @a dictionary ordering. * @ingroup sorting_algorithms * @param first Start of range. * @param last End of range. * @return False if wrapped to last permutation, true otherwise. * * Treats all permutations of the range as a set of @a dictionary sorted * sequences. Permutes the current sequence into the previous one of this * set. Returns true if there are more sequences to generate. If the * sequence is the smallest of the set, the largest is generated and false * returned. */ template bool prev_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIterator __ii = __i; --__i; if (*__ii < *__i) { _BidirectionalIterator __j = __last; while (!(*--__j < *__i)) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } } /** * @brief Permute range into the previous @a dictionary ordering using * comparison functor. * @ingroup sorting_algorithms * @param first Start of range. * @param last End of range. * @param comp A comparison functor. * @return False if wrapped to last permutation, true otherwise. * * Treats all permutations of the range [first,last) as a set of * @a dictionary sorted sequences ordered by @a comp. Permutes the current * sequence into the previous one of this set. Returns true if there are * more sequences to generate. If the sequence is the smallest of the set, * the largest is generated and false returned. */ template bool prev_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_BidirectionalIterator>::value_type, typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIterator __ii = __i; --__i; if (__comp(*__ii, *__i)) { _BidirectionalIterator __j = __last; while (!bool(__comp(*--__j, *__i))) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } } // replace // replace_if /** * @brief Copy a sequence, replacing each element of one value with another * value. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param old_value The value to be replaced. * @param new_value The replacement value. * @return The end of the output sequence, @p result+(last-first). * * Copies each element in the input range @p [first,last) to the * output range @p [result,result+(last-first)) replacing elements * equal to @p old_value with @p new_value. */ template _OutputIterator replace_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, const _Tp& __old_value, const _Tp& __new_value) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first, ++__result) if (*__first == __old_value) *__result = __new_value; else *__result = *__first; return __result; } /** * @brief Copy a sequence, replacing each value for which a predicate * returns true with another value. * @ingroup mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param pred A predicate. * @param new_value The replacement value. * @return The end of the output sequence, @p result+(last-first). * * Copies each element in the range @p [first,last) to the range * @p [result,result+(last-first)) replacing elements for which * @p pred returns true with @p new_value. */ template _OutputIterator replace_copy_if(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _Predicate __pred, const _Tp& __new_value) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first, ++__result) if (__pred(*__first)) *__result = __new_value; else *__result = *__first; return __result; } #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief Determines whether the elements of a sequence are sorted. * @ingroup sorting_algorithms * @param first An iterator. * @param last Another iterator. * @return True if the elements are sorted, false otherwise. */ template inline bool is_sorted(_ForwardIterator __first, _ForwardIterator __last) { return std::is_sorted_until(__first, __last) == __last; } /** * @brief Determines whether the elements of a sequence are sorted * according to a comparison functor. * @ingroup sorting_algorithms * @param first An iterator. * @param last Another iterator. * @param comp A comparison functor. * @return True if the elements are sorted, false otherwise. */ template inline bool is_sorted(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { return std::is_sorted_until(__first, __last, __comp) == __last; } /** * @brief Determines the end of a sorted sequence. * @ingroup sorting_algorithms * @param first An iterator. * @param last Another iterator. * @return An iterator pointing to the last iterator i in [first, last) * for which the range [first, i) is sorted. */ template _ForwardIterator is_sorted_until(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __last; _ForwardIterator __next = __first; for (++__next; __next != __last; __first = __next, ++__next) if (*__next < *__first) return __next; return __next; } /** * @brief Determines the end of a sorted sequence using comparison functor. * @ingroup sorting_algorithms * @param first An iterator. * @param last Another iterator. * @param comp A comparison functor. * @return An iterator pointing to the last iterator i in [first, last) * for which the range [first, i) is sorted. */ template _ForwardIterator is_sorted_until(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __last; _ForwardIterator __next = __first; for (++__next; __next != __last; __first = __next, ++__next) if (__comp(*__next, *__first)) return __next; return __next; } /** * @brief Determines min and max at once as an ordered pair. * @ingroup sorting_algorithms * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @return A pair(b, a) if b is smaller than a, pair(a, b) otherwise. */ template inline pair minmax(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcxx_function_requires(_LessThanComparableConcept<_Tp>) return __b < __a ? pair(__b, __a) : pair(__a, __b); } /** * @brief Determines min and max at once as an ordered pair. * @ingroup sorting_algorithms * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @param comp A @link comparison_functor comparison functor@endlink. * @return A pair(b, a) if b is smaller than a, pair(a, b) otherwise. */ template inline pair minmax(const _Tp& __a, const _Tp& __b, _Compare __comp) { return __comp(__b, __a) ? pair(__b, __a) : pair(__a, __b); } /** * @brief Return a pair of iterators pointing to the minimum and maximum * elements in a range. * @ingroup sorting_algorithms * @param first Start of range. * @param last End of range. * @return make_pair(m, M), where m is the first iterator i in * [first, last) such that no other element in the range is * smaller, and where M is the last iterator i in [first, last) * such that no other element in the range is larger. */ template pair<_ForwardIterator, _ForwardIterator> minmax_element(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); _ForwardIterator __next = __first; if (__first == __last || ++__next == __last) return std::make_pair(__first, __first); _ForwardIterator __min, __max; if (*__next < *__first) { __min = __next; __max = __first; } else { __min = __first; __max = __next; } __first = __next; ++__first; while (__first != __last) { __next = __first; if (++__next == __last) { if (*__first < *__min) __min = __first; else if (!(*__first < *__max)) __max = __first; break; } if (*__next < *__first) { if (*__next < *__min) __min = __next; if (!(*__first < *__max)) __max = __first; } else { if (*__first < *__min) __min = __first; if (!(*__next < *__max)) __max = __next; } __first = __next; ++__first; } return std::make_pair(__min, __max); } /** * @brief Return a pair of iterators pointing to the minimum and maximum * elements in a range. * @ingroup sorting_algorithms * @param first Start of range. * @param last End of range. * @param comp Comparison functor. * @return make_pair(m, M), where m is the first iterator i in * [first, last) such that no other element in the range is * smaller, and where M is the last iterator i in [first, last) * such that no other element in the range is larger. */ template pair<_ForwardIterator, _ForwardIterator> minmax_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); _ForwardIterator __next = __first; if (__first == __last || ++__next == __last) return std::make_pair(__first, __first); _ForwardIterator __min, __max; if (__comp(*__next, *__first)) { __min = __next; __max = __first; } else { __min = __first; __max = __next; } __first = __next; ++__first; while (__first != __last) { __next = __first; if (++__next == __last) { if (__comp(*__first, *__min)) __min = __first; else if (!__comp(*__first, *__max)) __max = __first; break; } if (__comp(*__next, *__first)) { if (__comp(*__next, *__min)) __min = __next; if (!__comp(*__first, *__max)) __max = __first; } else { if (__comp(*__first, *__min)) __min = __first; if (!__comp(*__next, *__max)) __max = __next; } __first = __next; ++__first; } return std::make_pair(__min, __max); } // N2722 + DR 915. template inline _Tp min(initializer_list<_Tp> __l) { return *std::min_element(__l.begin(), __l.end()); } template inline _Tp min(initializer_list<_Tp> __l, _Compare __comp) { return *std::min_element(__l.begin(), __l.end(), __comp); } template inline _Tp max(initializer_list<_Tp> __l) { return *std::max_element(__l.begin(), __l.end()); } template inline _Tp max(initializer_list<_Tp> __l, _Compare __comp) { return *std::max_element(__l.begin(), __l.end(), __comp); } template inline pair<_Tp, _Tp> minmax(initializer_list<_Tp> __l) { pair __p = std::minmax_element(__l.begin(), __l.end()); return std::make_pair(*__p.first, *__p.second); } template inline pair<_Tp, _Tp> minmax(initializer_list<_Tp> __l, _Compare __comp) { pair __p = std::minmax_element(__l.begin(), __l.end(), __comp); return std::make_pair(*__p.first, *__p.second); } /** * @brief Checks whether a permutaion of the second sequence is equal * to the first sequence. * @ingroup non_mutating_algorithms * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @return true if there exists a permutation of the elements in the range * [first2, first2 + (last1 - first1)), beginning with * ForwardIterator2 begin, such that equal(first1, last1, begin) * returns true; otherwise, returns false. */ template bool is_permutation(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2) { // Efficiently compare identical prefixes: O(N) if sequences // have the same elements in the same order. for (; __first1 != __last1; ++__first1, ++__first2) if (!(*__first1 == *__first2)) break; if (__first1 == __last1) return true; // Establish __last2 assuming equal ranges by iterating over the // rest of the list. _ForwardIterator2 __last2 = __first2; std::advance(__last2, std::distance(__first1, __last1)); for (_ForwardIterator1 __scan = __first1; __scan != __last1; ++__scan) { if (__scan != _GLIBCXX_STD_A::find(__first1, __scan, *__scan)) continue; // We've seen this one before. auto __matches = std::count(__first2, __last2, *__scan); if (0 == __matches || std::count(__scan, __last1, *__scan) != __matches) return false; } return true; } /** * @brief Checks whether a permutation of the second sequence is equal * to the first sequence. * @ingroup non_mutating_algorithms * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param pred A binary predicate. * @return true if there exists a permutation of the elements in the range * [first2, first2 + (last1 - first1)), beginning with * ForwardIterator2 begin, such that equal(first1, last1, begin, * pred) returns true; otherwise, returns false. */ template bool is_permutation(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _BinaryPredicate __pred) { // Efficiently compare identical prefixes: O(N) if sequences // have the same elements in the same order. for (; __first1 != __last1; ++__first1, ++__first2) if (!bool(__pred(*__first1, *__first2))) break; if (__first1 == __last1) return true; // Establish __last2 assuming equal ranges by iterating over the // rest of the list. _ForwardIterator2 __last2 = __first2; std::advance(__last2, std::distance(__first1, __last1)); for (_ForwardIterator1 __scan = __first1; __scan != __last1; ++__scan) { using std::placeholders::_1; if (__scan != _GLIBCXX_STD_A::find_if(__first1, __scan, std::bind(__pred, _1, *__scan))) continue; // We've seen this one before. auto __matches = std::count_if(__first2, __last2, std::bind(__pred, _1, *__scan)); if (0 == __matches || std::count_if(__scan, __last1, std::bind(__pred, _1, *__scan)) != __matches) return false; } return true; } #ifdef _GLIBCXX_USE_C99_STDINT_TR1 /** * @brief Shuffle the elements of a sequence using a uniform random * number generator. * @ingroup mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @param g A UniformRandomNumberGenerator (26.5.1.3). * @return Nothing. * * Reorders the elements in the range @p [first,last) using @p g to * provide random numbers. */ template void shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last, _UniformRandomNumberGenerator&& __g) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; typedef typename std::make_unsigned<_DistanceType>::type __ud_type; typedef typename std::uniform_int_distribution<__ud_type> __distr_type; typedef typename __distr_type::param_type __p_type; __distr_type __d; for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) std::iter_swap(__i, __first + __d(__g, __p_type(0, __i - __first))); } #endif #endif // __GXX_EXPERIMENTAL_CXX0X__ _GLIBCXX_END_NAMESPACE_VERSION _GLIBCXX_BEGIN_NAMESPACE_ALGO /** * @brief Apply a function to every element of a sequence. * @ingroup non_mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param f A unary function object. * @return @p f (std::move(@p f) in C++0x). * * Applies the function object @p f to each element in the range * @p [first,last). @p f must not modify the order of the sequence. * If @p f has a return value it is ignored. */ template _Function for_each(_InputIterator __first, _InputIterator __last, _Function __f) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) __f(*__first); return _GLIBCXX_MOVE(__f); } /** * @brief Find the first occurrence of a value in a sequence. * @ingroup non_mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param val The value to find. * @return The first iterator @c i in the range @p [first,last) * such that @c *i == @p val, or @p last if no such iterator exists. */ template inline _InputIterator find(_InputIterator __first, _InputIterator __last, const _Tp& __val) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); return std::__find(__first, __last, __val, std::__iterator_category(__first)); } /** * @brief Find the first element in a sequence for which a * predicate is true. * @ingroup non_mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param pred A predicate. * @return The first iterator @c i in the range @p [first,last) * such that @p pred(*i) is true, or @p last if no such iterator exists. */ template inline _InputIterator find_if(_InputIterator __first, _InputIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__find_if(__first, __last, __pred, std::__iterator_category(__first)); } /** * @brief Find element from a set in a sequence. * @ingroup non_mutating_algorithms * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of match candidates. * @param last2 End of match candidates. * @return The first iterator @c i in the range * @p [first1,last1) such that @c *i == @p *(i2) such that i2 is an * iterator in [first2,last2), or @p last1 if no such iterator exists. * * Searches the range @p [first1,last1) for an element that is equal to * some element in the range [first2,last2). If found, returns an iterator * in the range [first1,last1), otherwise returns @p last1. */ template _InputIterator find_first_of(_InputIterator __first1, _InputIterator __last1, _ForwardIterator __first2, _ForwardIterator __last2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); for (; __first1 != __last1; ++__first1) for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter) if (*__first1 == *__iter) return __first1; return __last1; } /** * @brief Find element from a set in a sequence using a predicate. * @ingroup non_mutating_algorithms * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of match candidates. * @param last2 End of match candidates. * @param comp Predicate to use. * @return The first iterator @c i in the range * @p [first1,last1) such that @c comp(*i, @p *(i2)) is true and i2 is an * iterator in [first2,last2), or @p last1 if no such iterator exists. * * Searches the range @p [first1,last1) for an element that is * equal to some element in the range [first2,last2). If found, * returns an iterator in the range [first1,last1), otherwise * returns @p last1. */ template _InputIterator find_first_of(_InputIterator __first1, _InputIterator __last1, _ForwardIterator __first2, _ForwardIterator __last2, _BinaryPredicate __comp) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_InputIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); for (; __first1 != __last1; ++__first1) for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter) if (__comp(*__first1, *__iter)) return __first1; return __last1; } /** * @brief Find two adjacent values in a sequence that are equal. * @ingroup non_mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @return The first iterator @c i such that @c i and @c i+1 are both * valid iterators in @p [first,last) and such that @c *i == @c *(i+1), * or @p last if no such iterator exists. */ template _ForwardIterator adjacent_find(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_EqualityComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __last; _ForwardIterator __next = __first; while(++__next != __last) { if (*__first == *__next) return __first; __first = __next; } return __last; } /** * @brief Find two adjacent values in a sequence using a predicate. * @ingroup non_mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @param binary_pred A binary predicate. * @return The first iterator @c i such that @c i and @c i+1 are both * valid iterators in @p [first,last) and such that * @p binary_pred(*i,*(i+1)) is true, or @p last if no such iterator * exists. */ template _ForwardIterator adjacent_find(_ForwardIterator __first, _ForwardIterator __last, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __last; _ForwardIterator __next = __first; while(++__next != __last) { if (__binary_pred(*__first, *__next)) return __first; __first = __next; } return __last; } /** * @brief Count the number of copies of a value in a sequence. * @ingroup non_mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param value The value to be counted. * @return The number of iterators @c i in the range @p [first,last) * for which @c *i == @p value */ template typename iterator_traits<_InputIterator>::difference_type count(_InputIterator __first, _InputIterator __last, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); typename iterator_traits<_InputIterator>::difference_type __n = 0; for (; __first != __last; ++__first) if (*__first == __value) ++__n; return __n; } /** * @brief Count the elements of a sequence for which a predicate is true. * @ingroup non_mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param pred A predicate. * @return The number of iterators @c i in the range @p [first,last) * for which @p pred(*i) is true. */ template typename iterator_traits<_InputIterator>::difference_type count_if(_InputIterator __first, _InputIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); typename iterator_traits<_InputIterator>::difference_type __n = 0; for (; __first != __last; ++__first) if (__pred(*__first)) ++__n; return __n; } /** * @brief Search a sequence for a matching sub-sequence. * @ingroup non_mutating_algorithms * @param first1 A forward iterator. * @param last1 A forward iterator. * @param first2 A forward iterator. * @param last2 A forward iterator. * @return The first iterator @c i in the range * @p [first1,last1-(last2-first2)) such that @c *(i+N) == @p *(first2+N) * for each @c N in the range @p [0,last2-first2), or @p last1 if no * such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2) and * returns an iterator to the first element of the sub-sequence, or * @p last1 if the sub-sequence is not found. * * Because the sub-sequence must lie completely within the range * @p [first1,last1) it must start at a position less than * @p last1-(last2-first2) where @p last2-first2 is the length of the * sub-sequence. * This means that the returned iterator @c i will be in the range * @p [first1,last1-(last2-first2)) */ template _ForwardIterator1 search(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); // Test for empty ranges if (__first1 == __last1 || __first2 == __last2) return __first1; // Test for a pattern of length 1. _ForwardIterator2 __p1(__first2); if (++__p1 == __last2) return _GLIBCXX_STD_A::find(__first1, __last1, *__first2); // General case. _ForwardIterator2 __p; _ForwardIterator1 __current = __first1; for (;;) { __first1 = _GLIBCXX_STD_A::find(__first1, __last1, *__first2); if (__first1 == __last1) return __last1; __p = __p1; __current = __first1; if (++__current == __last1) return __last1; while (*__current == *__p) { if (++__p == __last2) return __first1; if (++__current == __last1) return __last1; } ++__first1; } return __first1; } /** * @brief Search a sequence for a matching sub-sequence using a predicate. * @ingroup non_mutating_algorithms * @param first1 A forward iterator. * @param last1 A forward iterator. * @param first2 A forward iterator. * @param last2 A forward iterator. * @param predicate A binary predicate. * @return The first iterator @c i in the range * @p [first1,last1-(last2-first2)) such that * @p predicate(*(i+N),*(first2+N)) is true for each @c N in the range * @p [0,last2-first2), or @p last1 if no such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2), * using @p predicate to determine equality, and returns an iterator * to the first element of the sub-sequence, or @p last1 if no such * iterator exists. * * @see search(_ForwardIter1, _ForwardIter1, _ForwardIter2, _ForwardIter2) */ template _ForwardIterator1 search(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __predicate) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); // Test for empty ranges if (__first1 == __last1 || __first2 == __last2) return __first1; // Test for a pattern of length 1. _ForwardIterator2 __p1(__first2); if (++__p1 == __last2) { while (__first1 != __last1 && !bool(__predicate(*__first1, *__first2))) ++__first1; return __first1; } // General case. _ForwardIterator2 __p; _ForwardIterator1 __current = __first1; for (;;) { while (__first1 != __last1 && !bool(__predicate(*__first1, *__first2))) ++__first1; if (__first1 == __last1) return __last1; __p = __p1; __current = __first1; if (++__current == __last1) return __last1; while (__predicate(*__current, *__p)) { if (++__p == __last2) return __first1; if (++__current == __last1) return __last1; } ++__first1; } return __first1; } /** * @brief Search a sequence for a number of consecutive values. * @ingroup non_mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @param count The number of consecutive values. * @param val The value to find. * @return The first iterator @c i in the range @p [first,last-count) * such that @c *(i+N) == @p val for each @c N in the range @p [0,count), * or @p last if no such iterator exists. * * Searches the range @p [first,last) for @p count consecutive elements * equal to @p val. */ template _ForwardIterator search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); if (__count <= 0) return __first; if (__count == 1) return _GLIBCXX_STD_A::find(__first, __last, __val); return std::__search_n(__first, __last, __count, __val, std::__iterator_category(__first)); } /** * @brief Search a sequence for a number of consecutive values using a * predicate. * @ingroup non_mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @param count The number of consecutive values. * @param val The value to find. * @param binary_pred A binary predicate. * @return The first iterator @c i in the range @p [first,last-count) * such that @p binary_pred(*(i+N),val) is true for each @c N in the * range @p [0,count), or @p last if no such iterator exists. * * Searches the range @p [first,last) for @p count consecutive elements * for which the predicate returns true. */ template _ForwardIterator search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); if (__count <= 0) return __first; if (__count == 1) { while (__first != __last && !bool(__binary_pred(*__first, __val))) ++__first; return __first; } return std::__search_n(__first, __last, __count, __val, __binary_pred, std::__iterator_category(__first)); } /** * @brief Perform an operation on a sequence. * @ingroup mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param unary_op A unary operator. * @return An output iterator equal to @p result+(last-first). * * Applies the operator to each element in the input range and assigns * the results to successive elements of the output sequence. * Evaluates @p *(result+N)=unary_op(*(first+N)) for each @c N in the * range @p [0,last-first). * * @p unary_op must not alter its argument. */ template _OutputIterator transform(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _UnaryOperation __unary_op) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, // "the type returned by a _UnaryOperation" __typeof__(__unary_op(*__first))>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first, ++__result) *__result = __unary_op(*__first); return __result; } /** * @brief Perform an operation on corresponding elements of two sequences. * @ingroup mutating_algorithms * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param result An output iterator. * @param binary_op A binary operator. * @return An output iterator equal to @p result+(last-first). * * Applies the operator to the corresponding elements in the two * input ranges and assigns the results to successive elements of the * output sequence. * Evaluates @p *(result+N)=binary_op(*(first1+N),*(first2+N)) for each * @c N in the range @p [0,last1-first1). * * @p binary_op must not alter either of its arguments. */ template _OutputIterator transform(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _OutputIterator __result, _BinaryOperation __binary_op) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, // "the type returned by a _BinaryOperation" __typeof__(__binary_op(*__first1,*__first2))>) __glibcxx_requires_valid_range(__first1, __last1); for (; __first1 != __last1; ++__first1, ++__first2, ++__result) *__result = __binary_op(*__first1, *__first2); return __result; } /** * @brief Replace each occurrence of one value in a sequence with another * value. * @ingroup mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @param old_value The value to be replaced. * @param new_value The replacement value. * @return replace() returns no value. * * For each iterator @c i in the range @p [first,last) if @c *i == * @p old_value then the assignment @c *i = @p new_value is performed. */ template void replace(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __old_value, const _Tp& __new_value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_function_requires(_ConvertibleConcept<_Tp, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) if (*__first == __old_value) *__first = __new_value; } /** * @brief Replace each value in a sequence for which a predicate returns * true with another value. * @ingroup mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @param pred A predicate. * @param new_value The replacement value. * @return replace_if() returns no value. * * For each iterator @c i in the range @p [first,last) if @p pred(*i) * is true then the assignment @c *i = @p new_value is performed. */ template void replace_if(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, const _Tp& __new_value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_ConvertibleConcept<_Tp, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) if (__pred(*__first)) *__first = __new_value; } /** * @brief Assign the result of a function object to each value in a * sequence. * @ingroup mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @param gen A function object taking no arguments and returning * std::iterator_traits<_ForwardIterator>::value_type * @return generate() returns no value. * * Performs the assignment @c *i = @p gen() for each @c i in the range * @p [first,last). */ template void generate(_ForwardIterator __first, _ForwardIterator __last, _Generator __gen) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_GeneratorConcept<_Generator, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); for (; __first != __last; ++__first) *__first = __gen(); } /** * @brief Assign the result of a function object to each value in a * sequence. * @ingroup mutating_algorithms * @param first A forward iterator. * @param n The length of the sequence. * @param gen A function object taking no arguments and returning * std::iterator_traits<_ForwardIterator>::value_type * @return The end of the sequence, @p first+n * * Performs the assignment @c *i = @p gen() for each @c i in the range * @p [first,first+n). * * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 865. More algorithms that throw away information */ template _OutputIterator generate_n(_OutputIterator __first, _Size __n, _Generator __gen) { // concept requirements __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, // "the type returned by a _Generator" __typeof__(__gen())>) for (; __n > 0; --__n, ++__first) *__first = __gen(); return __first; } /** * @brief Copy a sequence, removing consecutive duplicate values. * @ingroup mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) to the range * beginning at @p result, except that only the first element is copied * from groups of consecutive elements that compare equal. * unique_copy() is stable, so the relative order of elements that are * copied is unchanged. * * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 241. Does unique_copy() require CopyConstructible and Assignable? * * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 538. 241 again: Does unique_copy() require CopyConstructible and * Assignable? */ template inline _OutputIterator unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_EqualityComparableConcept< typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __result; return std::__unique_copy(__first, __last, __result, std::__iterator_category(__first), std::__iterator_category(__result)); } /** * @brief Copy a sequence, removing consecutive values using a predicate. * @ingroup mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param binary_pred A binary predicate. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) to the range * beginning at @p result, except that only the first element is copied * from groups of consecutive elements for which @p binary_pred returns * true. * unique_copy() is stable, so the relative order of elements that are * copied is unchanged. * * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 241. Does unique_copy() require CopyConstructible and Assignable? */ template inline _OutputIterator unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _BinaryPredicate __binary_pred) { // concept requirements -- predicates checked later __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __result; return std::__unique_copy(__first, __last, __result, __binary_pred, std::__iterator_category(__first), std::__iterator_category(__result)); } /** * @brief Randomly shuffle the elements of a sequence. * @ingroup mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @return Nothing. * * Reorder the elements in the range @p [first,last) using a random * distribution, so that every possible ordering of the sequence is * equally likely. */ template inline void random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_requires_valid_range(__first, __last); if (__first != __last) for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) std::iter_swap(__i, __first + (std::rand() % ((__i - __first) + 1))); } /** * @brief Shuffle the elements of a sequence using a random number * generator. * @ingroup mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @param rand The RNG functor or function. * @return Nothing. * * Reorders the elements in the range @p [first,last) using @p rand to * provide a random distribution. Calling @p rand(N) for a positive * integer @p N should return a randomly chosen integer from the * range [0,N). */ template void random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last, #ifdef __GXX_EXPERIMENTAL_CXX0X__ _RandomNumberGenerator&& __rand) #else _RandomNumberGenerator& __rand) #endif { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return; for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) std::iter_swap(__i, __first + __rand((__i - __first) + 1)); } /** * @brief Move elements for which a predicate is true to the beginning * of a sequence. * @ingroup mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @param pred A predicate functor. * @return An iterator @p middle such that @p pred(i) is true for each * iterator @p i in the range @p [first,middle) and false for each @p i * in the range @p [middle,last). * * @p pred must not modify its operand. @p partition() does not preserve * the relative ordering of elements in each group, use * @p stable_partition() if this is needed. */ template inline _ForwardIterator partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__partition(__first, __last, __pred, std::__iterator_category(__first)); } /** * @brief Sort the smallest elements of a sequence. * @ingroup sorting_algorithms * @param first An iterator. * @param middle Another iterator. * @param last Another iterator. * @return Nothing. * * Sorts the smallest @p (middle-first) elements in the range * @p [first,last) and moves them to the range @p [first,middle). The * order of the remaining elements in the range @p [middle,last) is * undefined. * After the sort if @p i and @j are iterators in the range * @p [first,middle) such that @i precedes @j and @k is an iterator in * the range @p [middle,last) then @p *j<*i and @p *k<*i are both false. */ template inline void partial_sort(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last); std::__heap_select(__first, __middle, __last); std::sort_heap(__first, __middle); } /** * @brief Sort the smallest elements of a sequence using a predicate * for comparison. * @ingroup sorting_algorithms * @param first An iterator. * @param middle Another iterator. * @param last Another iterator. * @param comp A comparison functor. * @return Nothing. * * Sorts the smallest @p (middle-first) elements in the range * @p [first,last) and moves them to the range @p [first,middle). The * order of the remaining elements in the range @p [middle,last) is * undefined. * After the sort if @p i and @j are iterators in the range * @p [first,middle) such that @i precedes @j and @k is an iterator in * the range @p [middle,last) then @p *comp(j,*i) and @p comp(*k,*i) * are both false. */ template inline void partial_sort(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _ValueType>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last); std::__heap_select(__first, __middle, __last, __comp); std::sort_heap(__first, __middle, __comp); } /** * @brief Sort a sequence just enough to find a particular position. * @ingroup sorting_algorithms * @param first An iterator. * @param nth Another iterator. * @param last Another iterator. * @return Nothing. * * Rearranges the elements in the range @p [first,last) so that @p *nth * is the same element that would have been in that position had the * whole sequence been sorted. * whole sequence been sorted. The elements either side of @p *nth are * not completely sorted, but for any iterator @i in the range * @p [first,nth) and any iterator @j in the range @p [nth,last) it * holds that @p *j<*i is false. */ template inline void nth_element(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>) __glibcxx_requires_valid_range(__first, __nth); __glibcxx_requires_valid_range(__nth, __last); if (__first == __last || __nth == __last) return; std::__introselect(__first, __nth, __last, std::__lg(__last - __first) * 2); } /** * @brief Sort a sequence just enough to find a particular position * using a predicate for comparison. * @ingroup sorting_algorithms * @param first An iterator. * @param nth Another iterator. * @param last Another iterator. * @param comp A comparison functor. * @return Nothing. * * Rearranges the elements in the range @p [first,last) so that @p *nth * is the same element that would have been in that position had the * whole sequence been sorted. The elements either side of @p *nth are * not completely sorted, but for any iterator @i in the range * @p [first,nth) and any iterator @j in the range @p [nth,last) it * holds that @p comp(*j,*i) is false. */ template inline void nth_element(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _ValueType>) __glibcxx_requires_valid_range(__first, __nth); __glibcxx_requires_valid_range(__nth, __last); if (__first == __last || __nth == __last) return; std::__introselect(__first, __nth, __last, std::__lg(__last - __first) * 2, __comp); } /** * @brief Sort the elements of a sequence. * @ingroup sorting_algorithms * @param first An iterator. * @param last Another iterator. * @return Nothing. * * Sorts the elements in the range @p [first,last) in ascending order, * such that @p *(i+1)<*i is false for each iterator @p i in the range * @p [first,last-1). * * The relative ordering of equivalent elements is not preserved, use * @p stable_sort() if this is needed. */ template inline void sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>) __glibcxx_requires_valid_range(__first, __last); if (__first != __last) { std::__introsort_loop(__first, __last, std::__lg(__last - __first) * 2); std::__final_insertion_sort(__first, __last); } } /** * @brief Sort the elements of a sequence using a predicate for comparison. * @ingroup sorting_algorithms * @param first An iterator. * @param last Another iterator. * @param comp A comparison functor. * @return Nothing. * * Sorts the elements in the range @p [first,last) in ascending order, * such that @p comp(*(i+1),*i) is false for every iterator @p i in the * range @p [first,last-1). * * The relative ordering of equivalent elements is not preserved, use * @p stable_sort() if this is needed. */ template inline void sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _ValueType>) __glibcxx_requires_valid_range(__first, __last); if (__first != __last) { std::__introsort_loop(__first, __last, std::__lg(__last - __first) * 2, __comp); std::__final_insertion_sort(__first, __last, __comp); } } /** * @brief Merges two sorted ranges. * @ingroup sorting_algorithms * @param first1 An iterator. * @param first2 Another iterator. * @param last1 Another iterator. * @param last2 Another iterator. * @param result An iterator pointing to the end of the merged range. * @return An iterator pointing to the first element not less * than @a val. * * Merges the ranges [first1,last1) and [first2,last2) into the sorted range * [result, result + (last1-first1) + (last2-first2)). Both input ranges * must be sorted, and the output range must not overlap with either of * the input ranges. The sort is @e stable, that is, for equivalent * elements in the two ranges, elements from the first range will always * come before elements from the second. */ template _OutputIterator merge(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_sorted_set(__first1, __last1, __first2); __glibcxx_requires_sorted_set(__first2, __last2, __first1); while (__first1 != __last1 && __first2 != __last2) { if (*__first2 < *__first1) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } /** * @brief Merges two sorted ranges. * @ingroup sorting_algorithms * @param first1 An iterator. * @param first2 Another iterator. * @param last1 Another iterator. * @param last2 Another iterator. * @param result An iterator pointing to the end of the merged range. * @param comp A functor to use for comparisons. * @return An iterator pointing to the first element "not less * than" @a val. * * Merges the ranges [first1,last1) and [first2,last2) into the sorted range * [result, result + (last1-first1) + (last2-first2)). Both input ranges * must be sorted, and the output range must not overlap with either of * the input ranges. The sort is @e stable, that is, for equivalent * elements in the two ranges, elements from the first range will always * come before elements from the second. * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template _OutputIterator merge(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType2, _ValueType1>) __glibcxx_requires_sorted_set_pred(__first1, __last1, __first2, __comp); __glibcxx_requires_sorted_set_pred(__first2, __last2, __first1, __comp); while (__first1 != __last1 && __first2 != __last2) { if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } /** * @brief Sort the elements of a sequence, preserving the relative order * of equivalent elements. * @ingroup sorting_algorithms * @param first An iterator. * @param last Another iterator. * @return Nothing. * * Sorts the elements in the range @p [first,last) in ascending order, * such that @p *(i+1)<*i is false for each iterator @p i in the range * @p [first,last-1). * * The relative ordering of equivalent elements is preserved, so any two * elements @p x and @p y in the range @p [first,last) such that * @p x inline void stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>) __glibcxx_requires_valid_range(__first, __last); _Temporary_buffer<_RandomAccessIterator, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__inplace_stable_sort(__first, __last); else std::__stable_sort_adaptive(__first, __last, __buf.begin(), _DistanceType(__buf.size())); } /** * @brief Sort the elements of a sequence using a predicate for comparison, * preserving the relative order of equivalent elements. * @ingroup sorting_algorithms * @param first An iterator. * @param last Another iterator. * @param comp A comparison functor. * @return Nothing. * * Sorts the elements in the range @p [first,last) in ascending order, * such that @p comp(*(i+1),*i) is false for each iterator @p i in the * range @p [first,last-1). * * The relative ordering of equivalent elements is preserved, so any two * elements @p x and @p y in the range @p [first,last) such that * @p comp(x,y) is false and @p comp(y,x) is false will have the same * relative ordering after calling @p stable_sort(). */ template inline void stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType; // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _ValueType>) __glibcxx_requires_valid_range(__first, __last); _Temporary_buffer<_RandomAccessIterator, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__inplace_stable_sort(__first, __last, __comp); else std::__stable_sort_adaptive(__first, __last, __buf.begin(), _DistanceType(__buf.size()), __comp); } /** * @brief Return the union of two sorted ranges. * @ingroup set_algorithms * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * each range in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other, * that element is copied and the iterator advanced. If an element is * contained in both ranges, the element from the first range is copied and * both ranges advance. The output range may not overlap either input * range. */ template _OutputIterator set_union(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_sorted_set(__first1, __last1, __first2); __glibcxx_requires_sorted_set(__first2, __last2, __first1); while (__first1 != __last1 && __first2 != __last2) { if (*__first1 < *__first2) { *__result = *__first1; ++__first1; } else if (*__first2 < *__first1) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; ++__first2; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } /** * @brief Return the union of two sorted ranges using a comparison functor. * @ingroup set_algorithms * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @param comp The comparison functor. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * each range in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other * according to @a comp, that element is copied and the iterator advanced. * If an equivalent element according to @a comp is contained in both * ranges, the element from the first range is copied and both ranges * advance. The output range may not overlap either input range. */ template _OutputIterator set_union(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType1, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType2, _ValueType1>) __glibcxx_requires_sorted_set_pred(__first1, __last1, __first2, __comp); __glibcxx_requires_sorted_set_pred(__first2, __last2, __first1, __comp); while (__first1 != __last1 && __first2 != __last2) { if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; } else if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; ++__first2; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } /** * @brief Return the intersection of two sorted ranges. * @ingroup set_algorithms * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * both ranges in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other, * that iterator advances. If an element is contained in both ranges, the * element from the first range is copied and both ranges advance. The * output range may not overlap either input range. */ template _OutputIterator set_intersection(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_sorted_set(__first1, __last1, __first2); __glibcxx_requires_sorted_set(__first2, __last2, __first1); while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) ++__first1; else if (*__first2 < *__first1) ++__first2; else { *__result = *__first1; ++__first1; ++__first2; ++__result; } return __result; } /** * @brief Return the intersection of two sorted ranges using comparison * functor. * @ingroup set_algorithms * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @param comp The comparison functor. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * both ranges in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other * according to @a comp, that iterator advances. If an element is * contained in both ranges according to @a comp, the element from the * first range is copied and both ranges advance. The output range may not * overlap either input range. */ template _OutputIterator set_intersection(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType1, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType2, _ValueType1>) __glibcxx_requires_sorted_set_pred(__first1, __last1, __first2, __comp); __glibcxx_requires_sorted_set_pred(__first2, __last2, __first1, __comp); while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) ++__first1; else if (__comp(*__first2, *__first1)) ++__first2; else { *__result = *__first1; ++__first1; ++__first2; ++__result; } return __result; } /** * @brief Return the difference of two sorted ranges. * @ingroup set_algorithms * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * the first range but not the second in order to the output range. * Iterators increment for each range. When the current element of the * first range is less than the second, that element is copied and the * iterator advances. If the current element of the second range is less, * the iterator advances, but no element is copied. If an element is * contained in both ranges, no elements are copied and both ranges * advance. The output range may not overlap either input range. */ template _OutputIterator set_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_sorted_set(__first1, __last1, __first2); __glibcxx_requires_sorted_set(__first2, __last2, __first1); while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) { *__result = *__first1; ++__first1; ++__result; } else if (*__first2 < *__first1) ++__first2; else { ++__first1; ++__first2; } return std::copy(__first1, __last1, __result); } /** * @brief Return the difference of two sorted ranges using comparison * functor. * @ingroup set_algorithms * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @param comp The comparison functor. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * the first range but not the second in order to the output range. * Iterators increment for each range. When the current element of the * first range is less than the second according to @a comp, that element * is copied and the iterator advances. If the current element of the * second range is less, no element is copied and the iterator advances. * If an element is contained in both ranges according to @a comp, no * elements are copied and both ranges advance. The output range may not * overlap either input range. */ template _OutputIterator set_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType1, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType2, _ValueType1>) __glibcxx_requires_sorted_set_pred(__first1, __last1, __first2, __comp); __glibcxx_requires_sorted_set_pred(__first2, __last2, __first1, __comp); while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; ++__result; } else if (__comp(*__first2, *__first1)) ++__first2; else { ++__first1; ++__first2; } return std::copy(__first1, __last1, __result); } /** * @brief Return the symmetric difference of two sorted ranges. * @ingroup set_algorithms * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * one range but not the other in order to the output range. Iterators * increment for each range. When the current element of one range is less * than the other, that element is copied and the iterator advances. If an * element is contained in both ranges, no elements are copied and both * ranges advance. The output range may not overlap either input range. */ template _OutputIterator set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_sorted_set(__first1, __last1, __first2); __glibcxx_requires_sorted_set(__first2, __last2, __first1); while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) { *__result = *__first1; ++__first1; ++__result; } else if (*__first2 < *__first1) { *__result = *__first2; ++__first2; ++__result; } else { ++__first1; ++__first2; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } /** * @brief Return the symmetric difference of two sorted ranges using * comparison functor. * @ingroup set_algorithms * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @param comp The comparison functor. * @return End of the output range. * @ingroup set_algorithms * * This operation iterates over both ranges, copying elements present in * one range but not the other in order to the output range. Iterators * increment for each range. When the current element of one range is less * than the other according to @a comp, that element is copied and the * iterator advances. If an element is contained in both ranges according * to @a comp, no elements are copied and both ranges advance. The output * range may not overlap either input range. */ template _OutputIterator set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType1, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType2, _ValueType1>) __glibcxx_requires_sorted_set_pred(__first1, __last1, __first2, __comp); __glibcxx_requires_sorted_set_pred(__first2, __last2, __first1, __comp); while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; ++__result; } else if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; ++__result; } else { ++__first1; ++__first2; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); } /** * @brief Return the minimum element in a range. * @ingroup sorting_algorithms * @param first Start of range. * @param last End of range. * @return Iterator referencing the first instance of the smallest value. */ template _ForwardIterator min_element(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (*__first < *__result) __result = __first; return __result; } /** * @brief Return the minimum element in a range using comparison functor. * @ingroup sorting_algorithms * @param first Start of range. * @param last End of range. * @param comp Comparison functor. * @return Iterator referencing the first instance of the smallest value * according to comp. */ template _ForwardIterator min_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (__comp(*__first, *__result)) __result = __first; return __result; } /** * @brief Return the maximum element in a range. * @ingroup sorting_algorithms * @param first Start of range. * @param last End of range. * @return Iterator referencing the first instance of the largest value. */ template _ForwardIterator max_element(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (*__result < *__first) __result = __first; return __result; } /** * @brief Return the maximum element in a range using comparison functor. * @ingroup sorting_algorithms * @param first Start of range. * @param last End of range. * @param comp Comparison functor. * @return Iterator referencing the first instance of the largest value * according to comp. */ template _ForwardIterator max_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (__comp(*__result, *__first)) __result = __first; return __result; } _GLIBCXX_END_NAMESPACE_ALGO } // namespace std #endif /* _STL_ALGO_H */