\exercice* \begin{enumerate} \item On lit graphiquement le coefficient directeur de chacune des tangentes en ces points.\par $f'\,(-4)=4 \qquad f'\,(0)=\dfrac{-3}{2} \qquad f'\,(4)=0$. \item \begin{asy}[height=6.5cm] import graph; import interpolate; import geometry; defaultpen(fontsize(9pt)); real[] xpt={-6.1,-5,-1,01,05,6.1}; real[] ypt={02,-2,00,03,-2,-3}; real[] dy= {00,03,-2,0.75,00,00}; real f(real t){return pwhermite(xpt,ypt,dy)(t);} path Cf=graph(f,-6.1,6.1); void tangente(int k,real lg=sqrt(1+dy[k]^2),real ld=lg, pen p=black+1, arrowbar arr=Arrows(SimpleHead,size=9pt)) { draw(((xpt[k],ypt[k])-lg*unit((1,dy[k])))--((xpt[k],ypt[k])+ld*unit((1,dy[k]))),p,arr); dot((xpt[k],ypt[k])); } xlimits(-6.1, 6.1); ylimits(-5.5, 5.5, Crop); xaxis(axis=BottomTop, p=invisible, ticks=Ticks(format="%", Step=1, extend=true, pTick=gray+.5pt, ptick=dotted) ); yaxis(axis=LeftRight, p=invisible, ticks=Ticks(format="%", Step=1, extend=true, pTick=gray+.5pt, ptick=dotted) ); xequals(L="$y$", 0, extend=false, arrow=Arrow(HookHead, size=9pt), p=black+1, ticks=Ticks(scale(.7)*Label(filltype=Fill(white)), Step=1, Size=3pt, end=false, endlabel=false, beginlabel=false, NoZero)); yequals(L="$x$", 0, extend=false, arrow=Arrow(HookHead, size=9pt), p=black+1, ticks=Ticks(scale(.7)*Label(filltype=Fill(white)), Step=1, Size=3pt, end=false, endlabel=false, beginlabel=false, NoZero)); labelx(L=scale(.7)*"$0$", (0,0), align=SW); label("$\mathcal C_f$", (-6, f(-6)), 1.5NE, brown); draw(Cf, brown+1); tangente(1,lg=sqrt(10)); tangente(2,lg=sqrt(5)); tangente(3,lg=sqrt(25)); tangente(4,lg=sqrt(1)); xlimits(-6.1, 6.1, Crop); ylimits(-5.5, 5.5, Crop); \end{asy} \end{enumerate}