/* * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include // 1-D constrained system // m (v2 - v1) = lambda // v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass. // x2 = x1 + h * v2 // 1-D mass-damper-spring system // m (v2 - v1) + h * d * v2 + h * k * // C = norm(p2 - p1) - L // u = (p2 - p1) / norm(p2 - p1) // Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1)) // J = [-u -cross(r1, u) u cross(r2, u)] // K = J * invM * JT // = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2 void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2, const b2Vec2& anchor1, const b2Vec2& anchor2) { bodyA = b1; bodyB = b2; localAnchorA = bodyA->GetLocalPoint(anchor1); localAnchorB = bodyB->GetLocalPoint(anchor2); b2Vec2 d = anchor2 - anchor1; length = d.Length(); } b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def) : b2Joint(def) { m_localAnchorA = def->localAnchorA; m_localAnchorB = def->localAnchorB; m_length = def->length; m_frequencyHz = def->frequencyHz; m_dampingRatio = def->dampingRatio; m_impulse = 0.0f; m_gamma = 0.0f; m_bias = 0.0f; } void b2DistanceJoint::InitVelocityConstraints(const b2SolverData& data) { m_indexA = m_bodyA->m_islandIndex; m_indexB = m_bodyB->m_islandIndex; m_localCenterA = m_bodyA->m_sweep.localCenter; m_localCenterB = m_bodyB->m_sweep.localCenter; m_invMassA = m_bodyA->m_invMass; m_invMassB = m_bodyB->m_invMass; m_invIA = m_bodyA->m_invI; m_invIB = m_bodyB->m_invI; b2Vec2 cA = data.positions[m_indexA].c; float32 aA = data.positions[m_indexA].a; b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; b2Vec2 cB = data.positions[m_indexB].c; float32 aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; b2Rot qA(aA), qB(aB); m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); m_u = cB + m_rB - cA - m_rA; // Handle singularity. float32 length = m_u.Length(); if (length > b2_linearSlop) { m_u *= 1.0f / length; } else { m_u.Set(0.0f, 0.0f); } float32 crAu = b2Cross(m_rA, m_u); float32 crBu = b2Cross(m_rB, m_u); float32 invMass = m_invMassA + m_invIA * crAu * crAu + m_invMassB + m_invIB * crBu * crBu; // Compute the effective mass matrix. m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; if (m_frequencyHz > 0.0f) { float32 C = length - m_length; // Frequency float32 omega = 2.0f * b2_pi * m_frequencyHz; // Damping coefficient float32 d = 2.0f * m_mass * m_dampingRatio * omega; // Spring stiffness float32 k = m_mass * omega * omega; // magic formulas float32 h = data.step.dt; m_gamma = h * (d + h * k); m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; m_bias = C * h * k * m_gamma; invMass += m_gamma; m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; } else { m_gamma = 0.0f; m_bias = 0.0f; } if (data.step.warmStarting) { // Scale the impulse to support a variable time step. m_impulse *= data.step.dtRatio; b2Vec2 P = m_impulse * m_u; vA -= m_invMassA * P; wA -= m_invIA * b2Cross(m_rA, P); vB += m_invMassB * P; wB += m_invIB * b2Cross(m_rB, P); } else { m_impulse = 0.0f; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } void b2DistanceJoint::SolveVelocityConstraints(const b2SolverData& data) { b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; // Cdot = dot(u, v + cross(w, r)) b2Vec2 vpA = vA + b2Cross(wA, m_rA); b2Vec2 vpB = vB + b2Cross(wB, m_rB); float32 Cdot = b2Dot(m_u, vpB - vpA); float32 impulse = -m_mass * (Cdot + m_bias + m_gamma * m_impulse); m_impulse += impulse; b2Vec2 P = impulse * m_u; vA -= m_invMassA * P; wA -= m_invIA * b2Cross(m_rA, P); vB += m_invMassB * P; wB += m_invIB * b2Cross(m_rB, P); data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } bool b2DistanceJoint::SolvePositionConstraints(const b2SolverData& data) { if (m_frequencyHz > 0.0f) { // There is no position correction for soft distance constraints. return true; } b2Vec2 cA = data.positions[m_indexA].c; float32 aA = data.positions[m_indexA].a; b2Vec2 cB = data.positions[m_indexB].c; float32 aB = data.positions[m_indexB].a; b2Rot qA(aA), qB(aB); b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 u = cB + rB - cA - rA; float32 length = u.Normalize(); float32 C = length - m_length; C = b2Clamp(C, -b2_maxLinearCorrection, b2_maxLinearCorrection); float32 impulse = -m_mass * C; b2Vec2 P = impulse * u; cA -= m_invMassA * P; aA -= m_invIA * b2Cross(rA, P); cB += m_invMassB * P; aB += m_invIB * b2Cross(rB, P); data.positions[m_indexA].c = cA; data.positions[m_indexA].a = aA; data.positions[m_indexB].c = cB; data.positions[m_indexB].a = aB; return b2Abs(C) < b2_linearSlop; } b2Vec2 b2DistanceJoint::GetAnchorA() const { return m_bodyA->GetWorldPoint(m_localAnchorA); } b2Vec2 b2DistanceJoint::GetAnchorB() const { return m_bodyB->GetWorldPoint(m_localAnchorB); } b2Vec2 b2DistanceJoint::GetReactionForce(float32 inv_dt) const { b2Vec2 F = (inv_dt * m_impulse) * m_u; return F; } float32 b2DistanceJoint::GetReactionTorque(float32 inv_dt) const { B2_NOT_USED(inv_dt); return 0.0f; } void b2DistanceJoint::Dump() { int32 indexA = m_bodyA->m_islandIndex; int32 indexB = m_bodyB->m_islandIndex; b2Log(" b2DistanceJointDef jd;\n"); b2Log(" jd.bodyA = bodies[%d];\n", indexA); b2Log(" jd.bodyB = bodies[%d];\n", indexB); b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); b2Log(" jd.length = %.15lef;\n", m_length); b2Log(" jd.frequencyHz = %.15lef;\n", m_frequencyHz); b2Log(" jd.dampingRatio = %.15lef;\n", m_dampingRatio); b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); }