/* * Copyright (c) 2007-2011 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include #include #include // Gear Joint: // C0 = (coordinate1 + ratio * coordinate2)_initial // C = (coordinate1 + ratio * coordinate2) - C0 = 0 // J = [J1 ratio * J2] // K = J * invM * JT // = J1 * invM1 * J1T + ratio * ratio * J2 * invM2 * J2T // // Revolute: // coordinate = rotation // Cdot = angularVelocity // J = [0 0 1] // K = J * invM * JT = invI // // Prismatic: // coordinate = dot(p - pg, ug) // Cdot = dot(v + cross(w, r), ug) // J = [ug cross(r, ug)] // K = J * invM * JT = invMass + invI * cross(r, ug)^2 b2GearJoint::b2GearJoint(const b2GearJointDef* def) : b2Joint(def) { m_joint1 = def->joint1; m_joint2 = def->joint2; m_typeA = m_joint1->GetType(); m_typeB = m_joint2->GetType(); b2Assert(m_typeA == e_revoluteJoint || m_typeA == e_prismaticJoint); b2Assert(m_typeB == e_revoluteJoint || m_typeB == e_prismaticJoint); float32 coordinateA, coordinateB; // TODO_ERIN there might be some problem with the joint edges in b2Joint. m_bodyC = m_joint1->GetBodyA(); m_bodyA = m_joint1->GetBodyB(); // Get geometry of joint1 b2Transform xfA = m_bodyA->m_xf; float32 aA = m_bodyA->m_sweep.a; b2Transform xfC = m_bodyC->m_xf; float32 aC = m_bodyC->m_sweep.a; if (m_typeA == e_revoluteJoint) { b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint1; m_localAnchorC = revolute->m_localAnchorA; m_localAnchorA = revolute->m_localAnchorB; m_referenceAngleA = revolute->m_referenceAngle; m_localAxisC.SetZero(); coordinateA = aA - aC - m_referenceAngleA; } else { b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint1; m_localAnchorC = prismatic->m_localAnchorA; m_localAnchorA = prismatic->m_localAnchorB; m_referenceAngleA = prismatic->m_referenceAngle; m_localAxisC = prismatic->m_localXAxisA; b2Vec2 pC = m_localAnchorC; b2Vec2 pA = b2MulT(xfC.q, b2Mul(xfA.q, m_localAnchorA) + (xfA.p - xfC.p)); coordinateA = b2Dot(pA - pC, m_localAxisC); } m_bodyD = m_joint2->GetBodyA(); m_bodyB = m_joint2->GetBodyB(); // Get geometry of joint2 b2Transform xfB = m_bodyB->m_xf; float32 aB = m_bodyB->m_sweep.a; b2Transform xfD = m_bodyD->m_xf; float32 aD = m_bodyD->m_sweep.a; if (m_typeB == e_revoluteJoint) { b2RevoluteJoint* revolute = (b2RevoluteJoint*)def->joint2; m_localAnchorD = revolute->m_localAnchorA; m_localAnchorB = revolute->m_localAnchorB; m_referenceAngleB = revolute->m_referenceAngle; m_localAxisD.SetZero(); coordinateB = aB - aD - m_referenceAngleB; } else { b2PrismaticJoint* prismatic = (b2PrismaticJoint*)def->joint2; m_localAnchorD = prismatic->m_localAnchorA; m_localAnchorB = prismatic->m_localAnchorB; m_referenceAngleB = prismatic->m_referenceAngle; m_localAxisD = prismatic->m_localXAxisA; b2Vec2 pD = m_localAnchorD; b2Vec2 pB = b2MulT(xfD.q, b2Mul(xfB.q, m_localAnchorB) + (xfB.p - xfD.p)); coordinateB = b2Dot(pB - pD, m_localAxisD); } m_ratio = def->ratio; m_constant = coordinateA + m_ratio * coordinateB; m_impulse = 0.0f; } void b2GearJoint::InitVelocityConstraints(const b2SolverData& data) { m_indexA = m_bodyA->m_islandIndex; m_indexB = m_bodyB->m_islandIndex; m_indexC = m_bodyC->m_islandIndex; m_indexD = m_bodyD->m_islandIndex; m_lcA = m_bodyA->m_sweep.localCenter; m_lcB = m_bodyB->m_sweep.localCenter; m_lcC = m_bodyC->m_sweep.localCenter; m_lcD = m_bodyD->m_sweep.localCenter; m_mA = m_bodyA->m_invMass; m_mB = m_bodyB->m_invMass; m_mC = m_bodyC->m_invMass; m_mD = m_bodyD->m_invMass; m_iA = m_bodyA->m_invI; m_iB = m_bodyB->m_invI; m_iC = m_bodyC->m_invI; m_iD = m_bodyD->m_invI; float32 aA = data.positions[m_indexA].a; b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; float32 aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; float32 aC = data.positions[m_indexC].a; b2Vec2 vC = data.velocities[m_indexC].v; float32 wC = data.velocities[m_indexC].w; float32 aD = data.positions[m_indexD].a; b2Vec2 vD = data.velocities[m_indexD].v; float32 wD = data.velocities[m_indexD].w; b2Rot qA(aA), qB(aB), qC(aC), qD(aD); m_mass = 0.0f; if (m_typeA == e_revoluteJoint) { m_JvAC.SetZero(); m_JwA = 1.0f; m_JwC = 1.0f; m_mass += m_iA + m_iC; } else { b2Vec2 u = b2Mul(qC, m_localAxisC); b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC); b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA); m_JvAC = u; m_JwC = b2Cross(rC, u); m_JwA = b2Cross(rA, u); m_mass += m_mC + m_mA + m_iC * m_JwC * m_JwC + m_iA * m_JwA * m_JwA; } if (m_typeB == e_revoluteJoint) { m_JvBD.SetZero(); m_JwB = m_ratio; m_JwD = m_ratio; m_mass += m_ratio * m_ratio * (m_iB + m_iD); } else { b2Vec2 u = b2Mul(qD, m_localAxisD); b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD); b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB); m_JvBD = m_ratio * u; m_JwD = m_ratio * b2Cross(rD, u); m_JwB = m_ratio * b2Cross(rB, u); m_mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * m_JwD * m_JwD + m_iB * m_JwB * m_JwB; } // Compute effective mass. m_mass = m_mass > 0.0f ? 1.0f / m_mass : 0.0f; if (data.step.warmStarting) { vA += (m_mA * m_impulse) * m_JvAC; wA += m_iA * m_impulse * m_JwA; vB += (m_mB * m_impulse) * m_JvBD; wB += m_iB * m_impulse * m_JwB; vC -= (m_mC * m_impulse) * m_JvAC; wC -= m_iC * m_impulse * m_JwC; vD -= (m_mD * m_impulse) * m_JvBD; wD -= m_iD * m_impulse * m_JwD; } else { m_impulse = 0.0f; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; data.velocities[m_indexC].v = vC; data.velocities[m_indexC].w = wC; data.velocities[m_indexD].v = vD; data.velocities[m_indexD].w = wD; } void b2GearJoint::SolveVelocityConstraints(const b2SolverData& data) { b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; b2Vec2 vC = data.velocities[m_indexC].v; float32 wC = data.velocities[m_indexC].w; b2Vec2 vD = data.velocities[m_indexD].v; float32 wD = data.velocities[m_indexD].w; float32 Cdot = b2Dot(m_JvAC, vA - vC) + b2Dot(m_JvBD, vB - vD); Cdot += (m_JwA * wA - m_JwC * wC) + (m_JwB * wB - m_JwD * wD); float32 impulse = -m_mass * Cdot; m_impulse += impulse; vA += (m_mA * impulse) * m_JvAC; wA += m_iA * impulse * m_JwA; vB += (m_mB * impulse) * m_JvBD; wB += m_iB * impulse * m_JwB; vC -= (m_mC * impulse) * m_JvAC; wC -= m_iC * impulse * m_JwC; vD -= (m_mD * impulse) * m_JvBD; wD -= m_iD * impulse * m_JwD; data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; data.velocities[m_indexC].v = vC; data.velocities[m_indexC].w = wC; data.velocities[m_indexD].v = vD; data.velocities[m_indexD].w = wD; } bool b2GearJoint::SolvePositionConstraints(const b2SolverData& data) { b2Vec2 cA = data.positions[m_indexA].c; float32 aA = data.positions[m_indexA].a; b2Vec2 cB = data.positions[m_indexB].c; float32 aB = data.positions[m_indexB].a; b2Vec2 cC = data.positions[m_indexC].c; float32 aC = data.positions[m_indexC].a; b2Vec2 cD = data.positions[m_indexD].c; float32 aD = data.positions[m_indexD].a; b2Rot qA(aA), qB(aB), qC(aC), qD(aD); float32 linearError = 0.0f; float32 coordinateA, coordinateB; b2Vec2 JvAC, JvBD; float32 JwA, JwB, JwC, JwD; float32 mass = 0.0f; if (m_typeA == e_revoluteJoint) { JvAC.SetZero(); JwA = 1.0f; JwC = 1.0f; mass += m_iA + m_iC; coordinateA = aA - aC - m_referenceAngleA; } else { b2Vec2 u = b2Mul(qC, m_localAxisC); b2Vec2 rC = b2Mul(qC, m_localAnchorC - m_lcC); b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_lcA); JvAC = u; JwC = b2Cross(rC, u); JwA = b2Cross(rA, u); mass += m_mC + m_mA + m_iC * JwC * JwC + m_iA * JwA * JwA; b2Vec2 pC = m_localAnchorC - m_lcC; b2Vec2 pA = b2MulT(qC, rA + (cA - cC)); coordinateA = b2Dot(pA - pC, m_localAxisC); } if (m_typeB == e_revoluteJoint) { JvBD.SetZero(); JwB = m_ratio; JwD = m_ratio; mass += m_ratio * m_ratio * (m_iB + m_iD); coordinateB = aB - aD - m_referenceAngleB; } else { b2Vec2 u = b2Mul(qD, m_localAxisD); b2Vec2 rD = b2Mul(qD, m_localAnchorD - m_lcD); b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_lcB); JvBD = m_ratio * u; JwD = m_ratio * b2Cross(rD, u); JwB = m_ratio * b2Cross(rB, u); mass += m_ratio * m_ratio * (m_mD + m_mB) + m_iD * JwD * JwD + m_iB * JwB * JwB; b2Vec2 pD = m_localAnchorD - m_lcD; b2Vec2 pB = b2MulT(qD, rB + (cB - cD)); coordinateB = b2Dot(pB - pD, m_localAxisD); } float32 C = (coordinateA + m_ratio * coordinateB) - m_constant; float32 impulse = 0.0f; if (mass > 0.0f) { impulse = -C / mass; } cA += m_mA * impulse * JvAC; aA += m_iA * impulse * JwA; cB += m_mB * impulse * JvBD; aB += m_iB * impulse * JwB; cC -= m_mC * impulse * JvAC; aC -= m_iC * impulse * JwC; cD -= m_mD * impulse * JvBD; aD -= m_iD * impulse * JwD; data.positions[m_indexA].c = cA; data.positions[m_indexA].a = aA; data.positions[m_indexB].c = cB; data.positions[m_indexB].a = aB; data.positions[m_indexC].c = cC; data.positions[m_indexC].a = aC; data.positions[m_indexD].c = cD; data.positions[m_indexD].a = aD; // TODO_ERIN not implemented return linearError < b2_linearSlop; } b2Vec2 b2GearJoint::GetAnchorA() const { return m_bodyA->GetWorldPoint(m_localAnchorA); } b2Vec2 b2GearJoint::GetAnchorB() const { return m_bodyB->GetWorldPoint(m_localAnchorB); } b2Vec2 b2GearJoint::GetReactionForce(float32 inv_dt) const { b2Vec2 P = m_impulse * m_JvAC; return inv_dt * P; } float32 b2GearJoint::GetReactionTorque(float32 inv_dt) const { float32 L = m_impulse * m_JwA; return inv_dt * L; } void b2GearJoint::SetRatio(float32 ratio) { b2Assert(b2IsValid(ratio)); m_ratio = ratio; } float32 b2GearJoint::GetRatio() const { return m_ratio; } void b2GearJoint::Dump() { int32 indexA = m_bodyA->m_islandIndex; int32 indexB = m_bodyB->m_islandIndex; int32 index1 = m_joint1->m_index; int32 index2 = m_joint2->m_index; b2Log(" b2GearJointDef jd;\n"); b2Log(" jd.bodyA = bodies[%d];\n", indexA); b2Log(" jd.bodyB = bodies[%d];\n", indexB); b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); b2Log(" jd.joint1 = joints[%d];\n", index1); b2Log(" jd.joint2 = joints[%d];\n", index2); b2Log(" jd.ratio = %.15lef;\n", m_ratio); b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); }