/* * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #ifndef B2_GEAR_JOINT_H #define B2_GEAR_JOINT_H #include /// Gear joint definition. This definition requires two existing /// revolute or prismatic joints (any combination will work). struct b2GearJointDef : public b2JointDef { b2GearJointDef() { type = e_gearJoint; joint1 = NULL; joint2 = NULL; ratio = 1.0f; } /// The first revolute/prismatic joint attached to the gear joint. b2Joint* joint1; /// The second revolute/prismatic joint attached to the gear joint. b2Joint* joint2; /// The gear ratio. /// @see b2GearJoint for explanation. float32 ratio; }; /// A gear joint is used to connect two joints together. Either joint /// can be a revolute or prismatic joint. You specify a gear ratio /// to bind the motions together: /// coordinate1 + ratio * coordinate2 = constant /// The ratio can be negative or positive. If one joint is a revolute joint /// and the other joint is a prismatic joint, then the ratio will have units /// of length or units of 1/length. /// @warning You have to manually destroy the gear joint if joint1 or joint2 /// is destroyed. class b2GearJoint : public b2Joint { public: b2Vec2 GetAnchorA() const; b2Vec2 GetAnchorB() const; b2Vec2 GetReactionForce(float32 inv_dt) const; float32 GetReactionTorque(float32 inv_dt) const; /// Get the first joint. b2Joint* GetJoint1() { return m_joint1; } /// Get the second joint. b2Joint* GetJoint2() { return m_joint2; } /// Set/Get the gear ratio. void SetRatio(float32 ratio); float32 GetRatio() const; /// Dump joint to dmLog void Dump(); protected: friend class b2Joint; b2GearJoint(const b2GearJointDef* data); void InitVelocityConstraints(const b2SolverData& data); void SolveVelocityConstraints(const b2SolverData& data); bool SolvePositionConstraints(const b2SolverData& data); b2Joint* m_joint1; b2Joint* m_joint2; b2JointType m_typeA; b2JointType m_typeB; // Body A is connected to body C // Body B is connected to body D b2Body* m_bodyC; b2Body* m_bodyD; // Solver shared b2Vec2 m_localAnchorA; b2Vec2 m_localAnchorB; b2Vec2 m_localAnchorC; b2Vec2 m_localAnchorD; b2Vec2 m_localAxisC; b2Vec2 m_localAxisD; float32 m_referenceAngleA; float32 m_referenceAngleB; float32 m_constant; float32 m_ratio; float32 m_impulse; // Solver temp int32 m_indexA, m_indexB, m_indexC, m_indexD; b2Vec2 m_lcA, m_lcB, m_lcC, m_lcD; float32 m_mA, m_mB, m_mC, m_mD; float32 m_iA, m_iB, m_iC, m_iD; b2Vec2 m_JvAC, m_JvBD; float32 m_JwA, m_JwB, m_JwC, m_JwD; float32 m_mass; }; #endif