/* * Copyright (c) 2006-2012 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include // Point-to-point constraint // Cdot = v2 - v1 // = v2 + cross(w2, r2) - v1 - cross(w1, r1) // J = [-I -r1_skew I r2_skew ] // Identity used: // w k % (rx i + ry j) = w * (-ry i + rx j) // Angle constraint // Cdot = w2 - w1 // J = [0 0 -1 0 0 1] // K = invI1 + invI2 void b2MotorJointDef::Initialize(b2Body* bA, b2Body* bB) { bodyA = bA; bodyB = bB; b2Vec2 xB = bodyB->GetPosition(); linearOffset = bodyA->GetLocalPoint(xB); float32 angleA = bodyA->GetAngle(); float32 angleB = bodyB->GetAngle(); angularOffset = angleB - angleA; } b2MotorJoint::b2MotorJoint(const b2MotorJointDef* def) : b2Joint(def) { m_linearOffset = def->linearOffset; m_angularOffset = def->angularOffset; m_linearImpulse.SetZero(); m_angularImpulse = 0.0f; m_maxForce = def->maxForce; m_maxTorque = def->maxTorque; m_correctionFactor = def->correctionFactor; } void b2MotorJoint::InitVelocityConstraints(const b2SolverData& data) { m_indexA = m_bodyA->m_islandIndex; m_indexB = m_bodyB->m_islandIndex; m_localCenterA = m_bodyA->m_sweep.localCenter; m_localCenterB = m_bodyB->m_sweep.localCenter; m_invMassA = m_bodyA->m_invMass; m_invMassB = m_bodyB->m_invMass; m_invIA = m_bodyA->m_invI; m_invIB = m_bodyB->m_invI; b2Vec2 cA = data.positions[m_indexA].c; float32 aA = data.positions[m_indexA].a; b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; b2Vec2 cB = data.positions[m_indexB].c; float32 aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; b2Rot qA(aA), qB(aB); // Compute the effective mass matrix. m_rA = b2Mul(qA, -m_localCenterA); m_rB = b2Mul(qB, -m_localCenterB); // J = [-I -r1_skew I r2_skew] // [ 0 -1 0 1] // r_skew = [-ry; rx] // Matlab // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] float32 mA = m_invMassA, mB = m_invMassB; float32 iA = m_invIA, iB = m_invIB; b2Mat22 K; K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y; K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y; K.ey.x = K.ex.y; K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x; m_linearMass = K.GetInverse(); m_angularMass = iA + iB; if (m_angularMass > 0.0f) { m_angularMass = 1.0f / m_angularMass; } m_linearError = cB + m_rB - cA - m_rA - b2Mul(qA, m_linearOffset); m_angularError = aB - aA - m_angularOffset; if (data.step.warmStarting) { // Scale impulses to support a variable time step. m_linearImpulse *= data.step.dtRatio; m_angularImpulse *= data.step.dtRatio; b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y); vA -= mA * P; wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse); vB += mB * P; wB += iB * (b2Cross(m_rB, P) + m_angularImpulse); } else { m_linearImpulse.SetZero(); m_angularImpulse = 0.0f; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } void b2MotorJoint::SolveVelocityConstraints(const b2SolverData& data) { b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; float32 mA = m_invMassA, mB = m_invMassB; float32 iA = m_invIA, iB = m_invIB; float32 h = data.step.dt; float32 inv_h = data.step.inv_dt; // Solve angular friction { float32 Cdot = wB - wA + inv_h * m_correctionFactor * m_angularError; float32 impulse = -m_angularMass * Cdot; float32 oldImpulse = m_angularImpulse; float32 maxImpulse = h * m_maxTorque; m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse); impulse = m_angularImpulse - oldImpulse; wA -= iA * impulse; wB += iB * impulse; } // Solve linear friction { b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA) + inv_h * m_correctionFactor * m_linearError; b2Vec2 impulse = -b2Mul(m_linearMass, Cdot); b2Vec2 oldImpulse = m_linearImpulse; m_linearImpulse += impulse; float32 maxImpulse = h * m_maxForce; if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse) { m_linearImpulse.Normalize(); m_linearImpulse *= maxImpulse; } impulse = m_linearImpulse - oldImpulse; vA -= mA * impulse; wA -= iA * b2Cross(m_rA, impulse); vB += mB * impulse; wB += iB * b2Cross(m_rB, impulse); } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } bool b2MotorJoint::SolvePositionConstraints(const b2SolverData& data) { B2_NOT_USED(data); return true; } b2Vec2 b2MotorJoint::GetAnchorA() const { return m_bodyA->GetPosition(); } b2Vec2 b2MotorJoint::GetAnchorB() const { return m_bodyB->GetPosition(); } b2Vec2 b2MotorJoint::GetReactionForce(float32 inv_dt) const { return inv_dt * m_linearImpulse; } float32 b2MotorJoint::GetReactionTorque(float32 inv_dt) const { return inv_dt * m_angularImpulse; } void b2MotorJoint::SetMaxForce(float32 force) { b2Assert(b2IsValid(force) && force >= 0.0f); m_maxForce = force; } float32 b2MotorJoint::GetMaxForce() const { return m_maxForce; } void b2MotorJoint::SetMaxTorque(float32 torque) { b2Assert(b2IsValid(torque) && torque >= 0.0f); m_maxTorque = torque; } float32 b2MotorJoint::GetMaxTorque() const { return m_maxTorque; } void b2MotorJoint::SetCorrectionFactor(float32 factor) { b2Assert(b2IsValid(factor) && 0.0f <= factor && factor <= 1.0f); m_correctionFactor = factor; } float32 b2MotorJoint::GetCorrectionFactor() const { return m_correctionFactor; } void b2MotorJoint::SetLinearOffset(const b2Vec2& linearOffset) { if (linearOffset.x != m_linearOffset.x || linearOffset.y != m_linearOffset.y) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_linearOffset = linearOffset; } } const b2Vec2& b2MotorJoint::GetLinearOffset() const { return m_linearOffset; } void b2MotorJoint::SetAngularOffset(float32 angularOffset) { if (angularOffset != m_angularOffset) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_angularOffset = angularOffset; } } float32 b2MotorJoint::GetAngularOffset() const { return m_angularOffset; } void b2MotorJoint::Dump() { int32 indexA = m_bodyA->m_islandIndex; int32 indexB = m_bodyB->m_islandIndex; b2Log(" b2MotorJointDef jd;\n"); b2Log(" jd.bodyA = bodies[%d];\n", indexA); b2Log(" jd.bodyB = bodies[%d];\n", indexB); b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); b2Log(" jd.linearOffset.Set(%.15lef, %.15lef);\n", m_linearOffset.x, m_linearOffset.y); b2Log(" jd.angularOffset = %.15lef;\n", m_angularOffset); b2Log(" jd.maxForce = %.15lef;\n", m_maxForce); b2Log(" jd.maxTorque = %.15lef;\n", m_maxTorque); b2Log(" jd.correctionFactor = %.15lef;\n", m_correctionFactor); b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); }