/* * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include // Linear constraint (point-to-line) // d = p2 - p1 = x2 + r2 - x1 - r1 // C = dot(perp, d) // Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - cross(w1, r1)) // = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + dot(cross(r2, perp), v2) // J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)] // // Angular constraint // C = a2 - a1 + a_initial // Cdot = w2 - w1 // J = [0 0 -1 0 0 1] // // K = J * invM * JT // // J = [-a -s1 a s2] // [0 -1 0 1] // a = perp // s1 = cross(d + r1, a) = cross(p2 - x1, a) // s2 = cross(r2, a) = cross(p2 - x2, a) // Motor/Limit linear constraint // C = dot(ax1, d) // Cdot = = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + dot(cross(r2, ax1), v2) // J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)] // Block Solver // We develop a block solver that includes the joint limit. This makes the limit stiff (inelastic) even // when the mass has poor distribution (leading to large torques about the joint anchor points). // // The Jacobian has 3 rows: // J = [-uT -s1 uT s2] // linear // [0 -1 0 1] // angular // [-vT -a1 vT a2] // limit // // u = perp // v = axis // s1 = cross(d + r1, u), s2 = cross(r2, u) // a1 = cross(d + r1, v), a2 = cross(r2, v) // M * (v2 - v1) = JT * df // J * v2 = bias // // v2 = v1 + invM * JT * df // J * (v1 + invM * JT * df) = bias // K * df = bias - J * v1 = -Cdot // K = J * invM * JT // Cdot = J * v1 - bias // // Now solve for f2. // df = f2 - f1 // K * (f2 - f1) = -Cdot // f2 = invK * (-Cdot) + f1 // // Clamp accumulated limit impulse. // lower: f2(3) = max(f2(3), 0) // upper: f2(3) = min(f2(3), 0) // // Solve for correct f2(1:2) // K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:3) * f1 // = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:2) * f1(1:2) + K(1:2,3) * f1(3) // K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3)) + K(1:2,1:2) * f1(1:2) // f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + f1(1:2) // // Now compute impulse to be applied: // df = f2 - f1 void b2PrismaticJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis) { bodyA = bA; bodyB = bB; localAnchorA = bodyA->GetLocalPoint(anchor); localAnchorB = bodyB->GetLocalPoint(anchor); localAxisA = bodyA->GetLocalVector(axis); referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); } b2PrismaticJoint::b2PrismaticJoint(const b2PrismaticJointDef* def) : b2Joint(def) { m_localAnchorA = def->localAnchorA; m_localAnchorB = def->localAnchorB; m_localXAxisA = def->localAxisA; m_localXAxisA.Normalize(); m_localYAxisA = b2Cross(1.0f, m_localXAxisA); m_referenceAngle = def->referenceAngle; m_impulse.SetZero(); m_motorMass = 0.0f; m_motorImpulse = 0.0f; m_lowerTranslation = def->lowerTranslation; m_upperTranslation = def->upperTranslation; m_maxMotorForce = def->maxMotorForce; m_motorSpeed = def->motorSpeed; m_enableLimit = def->enableLimit; m_enableMotor = def->enableMotor; m_limitState = e_inactiveLimit; m_axis.SetZero(); m_perp.SetZero(); } void b2PrismaticJoint::InitVelocityConstraints(const b2SolverData& data) { m_indexA = m_bodyA->m_islandIndex; m_indexB = m_bodyB->m_islandIndex; m_localCenterA = m_bodyA->m_sweep.localCenter; m_localCenterB = m_bodyB->m_sweep.localCenter; m_invMassA = m_bodyA->m_invMass; m_invMassB = m_bodyB->m_invMass; m_invIA = m_bodyA->m_invI; m_invIB = m_bodyB->m_invI; b2Vec2 cA = data.positions[m_indexA].c; float32 aA = data.positions[m_indexA].a; b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; b2Vec2 cB = data.positions[m_indexB].c; float32 aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; b2Rot qA(aA), qB(aB); // Compute the effective masses. b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 d = (cB - cA) + rB - rA; float32 mA = m_invMassA, mB = m_invMassB; float32 iA = m_invIA, iB = m_invIB; // Compute motor Jacobian and effective mass. { m_axis = b2Mul(qA, m_localXAxisA); m_a1 = b2Cross(d + rA, m_axis); m_a2 = b2Cross(rB, m_axis); m_motorMass = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2; if (m_motorMass > 0.0f) { m_motorMass = 1.0f / m_motorMass; } } // Prismatic constraint. { m_perp = b2Mul(qA, m_localYAxisA); m_s1 = b2Cross(d + rA, m_perp); m_s2 = b2Cross(rB, m_perp); float32 s1test; s1test = b2Cross(rA, m_perp); float32 k11 = mA + mB + iA * m_s1 * m_s1 + iB * m_s2 * m_s2; float32 k12 = iA * m_s1 + iB * m_s2; float32 k13 = iA * m_s1 * m_a1 + iB * m_s2 * m_a2; float32 k22 = iA + iB; if (k22 == 0.0f) { // For bodies with fixed rotation. k22 = 1.0f; } float32 k23 = iA * m_a1 + iB * m_a2; float32 k33 = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2; m_K.ex.Set(k11, k12, k13); m_K.ey.Set(k12, k22, k23); m_K.ez.Set(k13, k23, k33); } // Compute motor and limit terms. if (m_enableLimit) { float32 jointTranslation = b2Dot(m_axis, d); if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop) { m_limitState = e_equalLimits; } else if (jointTranslation <= m_lowerTranslation) { if (m_limitState != e_atLowerLimit) { m_limitState = e_atLowerLimit; m_impulse.z = 0.0f; } } else if (jointTranslation >= m_upperTranslation) { if (m_limitState != e_atUpperLimit) { m_limitState = e_atUpperLimit; m_impulse.z = 0.0f; } } else { m_limitState = e_inactiveLimit; m_impulse.z = 0.0f; } } else { m_limitState = e_inactiveLimit; m_impulse.z = 0.0f; } if (m_enableMotor == false) { m_motorImpulse = 0.0f; } if (data.step.warmStarting) { // Account for variable time step. m_impulse *= data.step.dtRatio; m_motorImpulse *= data.step.dtRatio; b2Vec2 P = m_impulse.x * m_perp + (m_motorImpulse + m_impulse.z) * m_axis; float32 LA = m_impulse.x * m_s1 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a1; float32 LB = m_impulse.x * m_s2 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a2; vA -= mA * P; wA -= iA * LA; vB += mB * P; wB += iB * LB; } else { m_impulse.SetZero(); m_motorImpulse = 0.0f; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } void b2PrismaticJoint::SolveVelocityConstraints(const b2SolverData& data) { b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; float32 mA = m_invMassA, mB = m_invMassB; float32 iA = m_invIA, iB = m_invIB; // Solve linear motor constraint. if (m_enableMotor && m_limitState != e_equalLimits) { float32 Cdot = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA; float32 impulse = m_motorMass * (m_motorSpeed - Cdot); float32 oldImpulse = m_motorImpulse; float32 maxImpulse = data.step.dt * m_maxMotorForce; m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); impulse = m_motorImpulse - oldImpulse; b2Vec2 P = impulse * m_axis; float32 LA = impulse * m_a1; float32 LB = impulse * m_a2; vA -= mA * P; wA -= iA * LA; vB += mB * P; wB += iB * LB; } b2Vec2 Cdot1; Cdot1.x = b2Dot(m_perp, vB - vA) + m_s2 * wB - m_s1 * wA; Cdot1.y = wB - wA; if (m_enableLimit && m_limitState != e_inactiveLimit) { // Solve prismatic and limit constraint in block form. float32 Cdot2; Cdot2 = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA; b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); b2Vec3 f1 = m_impulse; b2Vec3 df = m_K.Solve33(-Cdot); m_impulse += df; if (m_limitState == e_atLowerLimit) { m_impulse.z = b2Max(m_impulse.z, 0.0f); } else if (m_limitState == e_atUpperLimit) { m_impulse.z = b2Min(m_impulse.z, 0.0f); } // f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + f1(1:2) b2Vec2 b = -Cdot1 - (m_impulse.z - f1.z) * b2Vec2(m_K.ez.x, m_K.ez.y); b2Vec2 f2r = m_K.Solve22(b) + b2Vec2(f1.x, f1.y); m_impulse.x = f2r.x; m_impulse.y = f2r.y; df = m_impulse - f1; b2Vec2 P = df.x * m_perp + df.z * m_axis; float32 LA = df.x * m_s1 + df.y + df.z * m_a1; float32 LB = df.x * m_s2 + df.y + df.z * m_a2; vA -= mA * P; wA -= iA * LA; vB += mB * P; wB += iB * LB; } else { // Limit is inactive, just solve the prismatic constraint in block form. b2Vec2 df = m_K.Solve22(-Cdot1); m_impulse.x += df.x; m_impulse.y += df.y; b2Vec2 P = df.x * m_perp; float32 LA = df.x * m_s1 + df.y; float32 LB = df.x * m_s2 + df.y; vA -= mA * P; wA -= iA * LA; vB += mB * P; wB += iB * LB; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } bool b2PrismaticJoint::SolvePositionConstraints(const b2SolverData& data) { b2Vec2 cA = data.positions[m_indexA].c; float32 aA = data.positions[m_indexA].a; b2Vec2 cB = data.positions[m_indexB].c; float32 aB = data.positions[m_indexB].a; b2Rot qA(aA), qB(aB); float32 mA = m_invMassA, mB = m_invMassB; float32 iA = m_invIA, iB = m_invIB; // Compute fresh Jacobians b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 d = cB + rB - cA - rA; b2Vec2 axis = b2Mul(qA, m_localXAxisA); float32 a1 = b2Cross(d + rA, axis); float32 a2 = b2Cross(rB, axis); b2Vec2 perp = b2Mul(qA, m_localYAxisA); float32 s1 = b2Cross(d + rA, perp); float32 s2 = b2Cross(rB, perp); b2Vec3 impulse; b2Vec2 C1; C1.x = b2Dot(perp, d); C1.y = aB - aA - m_referenceAngle; float32 linearError = b2Abs(C1.x); float32 angularError = b2Abs(C1.y); bool active = false; float32 C2 = 0.0f; if (m_enableLimit) { float32 translation = b2Dot(axis, d); if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop) { // Prevent large angular corrections C2 = b2Clamp(translation, -b2_maxLinearCorrection, b2_maxLinearCorrection); linearError = b2Max(linearError, b2Abs(translation)); active = true; } else if (translation <= m_lowerTranslation) { // Prevent large linear corrections and allow some slop. C2 = b2Clamp(translation - m_lowerTranslation + b2_linearSlop, -b2_maxLinearCorrection, 0.0f); linearError = b2Max(linearError, m_lowerTranslation - translation); active = true; } else if (translation >= m_upperTranslation) { // Prevent large linear corrections and allow some slop. C2 = b2Clamp(translation - m_upperTranslation - b2_linearSlop, 0.0f, b2_maxLinearCorrection); linearError = b2Max(linearError, translation - m_upperTranslation); active = true; } } if (active) { float32 k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; float32 k12 = iA * s1 + iB * s2; float32 k13 = iA * s1 * a1 + iB * s2 * a2; float32 k22 = iA + iB; if (k22 == 0.0f) { // For fixed rotation k22 = 1.0f; } float32 k23 = iA * a1 + iB * a2; float32 k33 = mA + mB + iA * a1 * a1 + iB * a2 * a2; b2Mat33 K; K.ex.Set(k11, k12, k13); K.ey.Set(k12, k22, k23); K.ez.Set(k13, k23, k33); b2Vec3 C; C.x = C1.x; C.y = C1.y; C.z = C2; impulse = K.Solve33(-C); } else { float32 k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; float32 k12 = iA * s1 + iB * s2; float32 k22 = iA + iB; if (k22 == 0.0f) { k22 = 1.0f; } b2Mat22 K; K.ex.Set(k11, k12); K.ey.Set(k12, k22); b2Vec2 impulse1 = K.Solve(-C1); impulse.x = impulse1.x; impulse.y = impulse1.y; impulse.z = 0.0f; } b2Vec2 P = impulse.x * perp + impulse.z * axis; float32 LA = impulse.x * s1 + impulse.y + impulse.z * a1; float32 LB = impulse.x * s2 + impulse.y + impulse.z * a2; cA -= mA * P; aA -= iA * LA; cB += mB * P; aB += iB * LB; data.positions[m_indexA].c = cA; data.positions[m_indexA].a = aA; data.positions[m_indexB].c = cB; data.positions[m_indexB].a = aB; return linearError <= b2_linearSlop && angularError <= b2_angularSlop; } b2Vec2 b2PrismaticJoint::GetAnchorA() const { return m_bodyA->GetWorldPoint(m_localAnchorA); } b2Vec2 b2PrismaticJoint::GetAnchorB() const { return m_bodyB->GetWorldPoint(m_localAnchorB); } b2Vec2 b2PrismaticJoint::GetReactionForce(float32 inv_dt) const { return inv_dt * (m_impulse.x * m_perp + (m_motorImpulse + m_impulse.z) * m_axis); } float32 b2PrismaticJoint::GetReactionTorque(float32 inv_dt) const { return inv_dt * m_impulse.y; } float32 b2PrismaticJoint::GetJointTranslation() const { b2Vec2 pA = m_bodyA->GetWorldPoint(m_localAnchorA); b2Vec2 pB = m_bodyB->GetWorldPoint(m_localAnchorB); b2Vec2 d = pB - pA; b2Vec2 axis = m_bodyA->GetWorldVector(m_localXAxisA); float32 translation = b2Dot(d, axis); return translation; } float32 b2PrismaticJoint::GetJointSpeed() const { b2Body* bA = m_bodyA; b2Body* bB = m_bodyB; b2Vec2 rA = b2Mul(bA->m_xf.q, m_localAnchorA - bA->m_sweep.localCenter); b2Vec2 rB = b2Mul(bB->m_xf.q, m_localAnchorB - bB->m_sweep.localCenter); b2Vec2 p1 = bA->m_sweep.c + rA; b2Vec2 p2 = bB->m_sweep.c + rB; b2Vec2 d = p2 - p1; b2Vec2 axis = b2Mul(bA->m_xf.q, m_localXAxisA); b2Vec2 vA = bA->m_linearVelocity; b2Vec2 vB = bB->m_linearVelocity; float32 wA = bA->m_angularVelocity; float32 wB = bB->m_angularVelocity; float32 speed = b2Dot(d, b2Cross(wA, axis)) + b2Dot(axis, vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA)); return speed; } bool b2PrismaticJoint::IsLimitEnabled() const { return m_enableLimit; } void b2PrismaticJoint::EnableLimit(bool flag) { if (flag != m_enableLimit) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_enableLimit = flag; m_impulse.z = 0.0f; } } float32 b2PrismaticJoint::GetLowerLimit() const { return m_lowerTranslation; } float32 b2PrismaticJoint::GetUpperLimit() const { return m_upperTranslation; } void b2PrismaticJoint::SetLimits(float32 lower, float32 upper) { b2Assert(lower <= upper); if (lower != m_lowerTranslation || upper != m_upperTranslation) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_lowerTranslation = lower; m_upperTranslation = upper; m_impulse.z = 0.0f; } } bool b2PrismaticJoint::IsMotorEnabled() const { return m_enableMotor; } void b2PrismaticJoint::EnableMotor(bool flag) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_enableMotor = flag; } void b2PrismaticJoint::SetMotorSpeed(float32 speed) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_motorSpeed = speed; } void b2PrismaticJoint::SetMaxMotorForce(float32 force) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_maxMotorForce = force; } float32 b2PrismaticJoint::GetMotorForce(float32 inv_dt) const { return inv_dt * m_motorImpulse; } void b2PrismaticJoint::Dump() { int32 indexA = m_bodyA->m_islandIndex; int32 indexB = m_bodyB->m_islandIndex; b2Log(" b2PrismaticJointDef jd;\n"); b2Log(" jd.bodyA = bodies[%d];\n", indexA); b2Log(" jd.bodyB = bodies[%d];\n", indexB); b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); b2Log(" jd.localAxisA.Set(%.15lef, %.15lef);\n", m_localXAxisA.x, m_localXAxisA.y); b2Log(" jd.referenceAngle = %.15lef;\n", m_referenceAngle); b2Log(" jd.enableLimit = bool(%d);\n", m_enableLimit); b2Log(" jd.lowerTranslation = %.15lef;\n", m_lowerTranslation); b2Log(" jd.upperTranslation = %.15lef;\n", m_upperTranslation); b2Log(" jd.enableMotor = bool(%d);\n", m_enableMotor); b2Log(" jd.motorSpeed = %.15lef;\n", m_motorSpeed); b2Log(" jd.maxMotorForce = %.15lef;\n", m_maxMotorForce); b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); }