/* * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include #include #include // Point-to-point constraint // C = p2 - p1 // Cdot = v2 - v1 // = v2 + cross(w2, r2) - v1 - cross(w1, r1) // J = [-I -r1_skew I r2_skew ] // Identity used: // w k % (rx i + ry j) = w * (-ry i + rx j) // Motor constraint // Cdot = w2 - w1 // J = [0 0 -1 0 0 1] // K = invI1 + invI2 void b2RevoluteJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) { bodyA = bA; bodyB = bB; localAnchorA = bodyA->GetLocalPoint(anchor); localAnchorB = bodyB->GetLocalPoint(anchor); referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); } b2RevoluteJoint::b2RevoluteJoint(const b2RevoluteJointDef* def) : b2Joint(def) { m_localAnchorA = def->localAnchorA; m_localAnchorB = def->localAnchorB; m_referenceAngle = def->referenceAngle; m_impulse.SetZero(); m_motorImpulse = 0.0f; m_lowerAngle = def->lowerAngle; m_upperAngle = def->upperAngle; m_maxMotorTorque = def->maxMotorTorque; m_motorSpeed = def->motorSpeed; m_enableLimit = def->enableLimit; m_enableMotor = def->enableMotor; m_limitState = e_inactiveLimit; } void b2RevoluteJoint::InitVelocityConstraints(const b2SolverData& data) { m_indexA = m_bodyA->m_islandIndex; m_indexB = m_bodyB->m_islandIndex; m_localCenterA = m_bodyA->m_sweep.localCenter; m_localCenterB = m_bodyB->m_sweep.localCenter; m_invMassA = m_bodyA->m_invMass; m_invMassB = m_bodyB->m_invMass; m_invIA = m_bodyA->m_invI; m_invIB = m_bodyB->m_invI; float32 aA = data.positions[m_indexA].a; b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; float32 aB = data.positions[m_indexB].a; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; b2Rot qA(aA), qB(aB); m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); // J = [-I -r1_skew I r2_skew] // [ 0 -1 0 1] // r_skew = [-ry; rx] // Matlab // K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB] // [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB] // [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB] float32 mA = m_invMassA, mB = m_invMassB; float32 iA = m_invIA, iB = m_invIB; bool fixedRotation = (iA + iB == 0.0f); m_mass.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; m_mass.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; m_mass.ez.x = -m_rA.y * iA - m_rB.y * iB; m_mass.ex.y = m_mass.ey.x; m_mass.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; m_mass.ez.y = m_rA.x * iA + m_rB.x * iB; m_mass.ex.z = m_mass.ez.x; m_mass.ey.z = m_mass.ez.y; m_mass.ez.z = iA + iB; m_motorMass = iA + iB; if (m_motorMass > 0.0f) { m_motorMass = 1.0f / m_motorMass; } if (m_enableMotor == false || fixedRotation) { m_motorImpulse = 0.0f; } if (m_enableLimit && fixedRotation == false) { float32 jointAngle = aB - aA - m_referenceAngle; if (b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2_angularSlop) { m_limitState = e_equalLimits; } else if (jointAngle <= m_lowerAngle) { if (m_limitState != e_atLowerLimit) { m_impulse.z = 0.0f; } m_limitState = e_atLowerLimit; } else if (jointAngle >= m_upperAngle) { if (m_limitState != e_atUpperLimit) { m_impulse.z = 0.0f; } m_limitState = e_atUpperLimit; } else { m_limitState = e_inactiveLimit; m_impulse.z = 0.0f; } } else { m_limitState = e_inactiveLimit; } if (data.step.warmStarting) { // Scale impulses to support a variable time step. m_impulse *= data.step.dtRatio; m_motorImpulse *= data.step.dtRatio; b2Vec2 P(m_impulse.x, m_impulse.y); vA -= mA * P; wA -= iA * (b2Cross(m_rA, P) + m_motorImpulse + m_impulse.z); vB += mB * P; wB += iB * (b2Cross(m_rB, P) + m_motorImpulse + m_impulse.z); } else { m_impulse.SetZero(); m_motorImpulse = 0.0f; } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } void b2RevoluteJoint::SolveVelocityConstraints(const b2SolverData& data) { b2Vec2 vA = data.velocities[m_indexA].v; float32 wA = data.velocities[m_indexA].w; b2Vec2 vB = data.velocities[m_indexB].v; float32 wB = data.velocities[m_indexB].w; float32 mA = m_invMassA, mB = m_invMassB; float32 iA = m_invIA, iB = m_invIB; bool fixedRotation = (iA + iB == 0.0f); // Solve motor constraint. if (m_enableMotor && m_limitState != e_equalLimits && fixedRotation == false) { float32 Cdot = wB - wA - m_motorSpeed; float32 impulse = -m_motorMass * Cdot; float32 oldImpulse = m_motorImpulse; float32 maxImpulse = data.step.dt * m_maxMotorTorque; m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); impulse = m_motorImpulse - oldImpulse; wA -= iA * impulse; wB += iB * impulse; } // Solve limit constraint. if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) { b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); float32 Cdot2 = wB - wA; b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); b2Vec3 impulse = -m_mass.Solve33(Cdot); if (m_limitState == e_equalLimits) { m_impulse += impulse; } else if (m_limitState == e_atLowerLimit) { float32 newImpulse = m_impulse.z + impulse.z; if (newImpulse < 0.0f) { b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); b2Vec2 reduced = m_mass.Solve22(rhs); impulse.x = reduced.x; impulse.y = reduced.y; impulse.z = -m_impulse.z; m_impulse.x += reduced.x; m_impulse.y += reduced.y; m_impulse.z = 0.0f; } else { m_impulse += impulse; } } else if (m_limitState == e_atUpperLimit) { float32 newImpulse = m_impulse.z + impulse.z; if (newImpulse > 0.0f) { b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); b2Vec2 reduced = m_mass.Solve22(rhs); impulse.x = reduced.x; impulse.y = reduced.y; impulse.z = -m_impulse.z; m_impulse.x += reduced.x; m_impulse.y += reduced.y; m_impulse.z = 0.0f; } else { m_impulse += impulse; } } b2Vec2 P(impulse.x, impulse.y); vA -= mA * P; wA -= iA * (b2Cross(m_rA, P) + impulse.z); vB += mB * P; wB += iB * (b2Cross(m_rB, P) + impulse.z); } else { // Solve point-to-point constraint b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); b2Vec2 impulse = m_mass.Solve22(-Cdot); m_impulse.x += impulse.x; m_impulse.y += impulse.y; vA -= mA * impulse; wA -= iA * b2Cross(m_rA, impulse); vB += mB * impulse; wB += iB * b2Cross(m_rB, impulse); } data.velocities[m_indexA].v = vA; data.velocities[m_indexA].w = wA; data.velocities[m_indexB].v = vB; data.velocities[m_indexB].w = wB; } bool b2RevoluteJoint::SolvePositionConstraints(const b2SolverData& data) { b2Vec2 cA = data.positions[m_indexA].c; float32 aA = data.positions[m_indexA].a; b2Vec2 cB = data.positions[m_indexB].c; float32 aB = data.positions[m_indexB].a; b2Rot qA(aA), qB(aB); float32 angularError = 0.0f; float32 positionError = 0.0f; bool fixedRotation = (m_invIA + m_invIB == 0.0f); // Solve angular limit constraint. if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) { float32 angle = aB - aA - m_referenceAngle; float32 limitImpulse = 0.0f; if (m_limitState == e_equalLimits) { // Prevent large angular corrections float32 C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection); limitImpulse = -m_motorMass * C; angularError = b2Abs(C); } else if (m_limitState == e_atLowerLimit) { float32 C = angle - m_lowerAngle; angularError = -C; // Prevent large angular corrections and allow some slop. C = b2Clamp(C + b2_angularSlop, -b2_maxAngularCorrection, 0.0f); limitImpulse = -m_motorMass * C; } else if (m_limitState == e_atUpperLimit) { float32 C = angle - m_upperAngle; angularError = C; // Prevent large angular corrections and allow some slop. C = b2Clamp(C - b2_angularSlop, 0.0f, b2_maxAngularCorrection); limitImpulse = -m_motorMass * C; } aA -= m_invIA * limitImpulse; aB += m_invIB * limitImpulse; } // Solve point-to-point constraint. { qA.Set(aA); qB.Set(aB); b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); b2Vec2 C = cB + rB - cA - rA; positionError = C.Length(); float32 mA = m_invMassA, mB = m_invMassB; float32 iA = m_invIA, iB = m_invIB; b2Mat22 K; K.ex.x = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y; K.ex.y = -iA * rA.x * rA.y - iB * rB.x * rB.y; K.ey.x = K.ex.y; K.ey.y = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x; b2Vec2 impulse = -K.Solve(C); cA -= mA * impulse; aA -= iA * b2Cross(rA, impulse); cB += mB * impulse; aB += iB * b2Cross(rB, impulse); } data.positions[m_indexA].c = cA; data.positions[m_indexA].a = aA; data.positions[m_indexB].c = cB; data.positions[m_indexB].a = aB; return positionError <= b2_linearSlop && angularError <= b2_angularSlop; } b2Vec2 b2RevoluteJoint::GetAnchorA() const { return m_bodyA->GetWorldPoint(m_localAnchorA); } b2Vec2 b2RevoluteJoint::GetAnchorB() const { return m_bodyB->GetWorldPoint(m_localAnchorB); } b2Vec2 b2RevoluteJoint::GetReactionForce(float32 inv_dt) const { b2Vec2 P(m_impulse.x, m_impulse.y); return inv_dt * P; } float32 b2RevoluteJoint::GetReactionTorque(float32 inv_dt) const { return inv_dt * m_impulse.z; } float32 b2RevoluteJoint::GetJointAngle() const { b2Body* bA = m_bodyA; b2Body* bB = m_bodyB; return bB->m_sweep.a - bA->m_sweep.a - m_referenceAngle; } float32 b2RevoluteJoint::GetJointSpeed() const { b2Body* bA = m_bodyA; b2Body* bB = m_bodyB; return bB->m_angularVelocity - bA->m_angularVelocity; } bool b2RevoluteJoint::IsMotorEnabled() const { return m_enableMotor; } void b2RevoluteJoint::EnableMotor(bool flag) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_enableMotor = flag; } float32 b2RevoluteJoint::GetMotorTorque(float32 inv_dt) const { return inv_dt * m_motorImpulse; } void b2RevoluteJoint::SetMotorSpeed(float32 speed) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_motorSpeed = speed; } void b2RevoluteJoint::SetMaxMotorTorque(float32 torque) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_maxMotorTorque = torque; } bool b2RevoluteJoint::IsLimitEnabled() const { return m_enableLimit; } void b2RevoluteJoint::EnableLimit(bool flag) { if (flag != m_enableLimit) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_enableLimit = flag; m_impulse.z = 0.0f; } } float32 b2RevoluteJoint::GetLowerLimit() const { return m_lowerAngle; } float32 b2RevoluteJoint::GetUpperLimit() const { return m_upperAngle; } void b2RevoluteJoint::SetLimits(float32 lower, float32 upper) { b2Assert(lower <= upper); if (lower != m_lowerAngle || upper != m_upperAngle) { m_bodyA->SetAwake(true); m_bodyB->SetAwake(true); m_impulse.z = 0.0f; m_lowerAngle = lower; m_upperAngle = upper; } } void b2RevoluteJoint::Dump() { int32 indexA = m_bodyA->m_islandIndex; int32 indexB = m_bodyB->m_islandIndex; b2Log(" b2RevoluteJointDef jd;\n"); b2Log(" jd.bodyA = bodies[%d];\n", indexA); b2Log(" jd.bodyB = bodies[%d];\n", indexB); b2Log(" jd.collideConnected = bool(%d);\n", m_collideConnected); b2Log(" jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); b2Log(" jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); b2Log(" jd.referenceAngle = %.15lef;\n", m_referenceAngle); b2Log(" jd.enableLimit = bool(%d);\n", m_enableLimit); b2Log(" jd.lowerAngle = %.15lef;\n", m_lowerAngle); b2Log(" jd.upperAngle = %.15lef;\n", m_upperAngle); b2Log(" jd.enableMotor = bool(%d);\n", m_enableMotor); b2Log(" jd.motorSpeed = %.15lef;\n", m_motorSpeed); b2Log(" jd.maxMotorTorque = %.15lef;\n", m_maxMotorTorque); b2Log(" joints[%d] = m_world->CreateJoint(&jd);\n", m_index); }