/* * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #ifndef B2_WELD_JOINT_H #define B2_WELD_JOINT_H #include /// Weld joint definition. You need to specify local anchor points /// where they are attached and the relative body angle. The position /// of the anchor points is important for computing the reaction torque. struct b2WeldJointDef : public b2JointDef { b2WeldJointDef() { type = e_weldJoint; localAnchorA.Set(0.0f, 0.0f); localAnchorB.Set(0.0f, 0.0f); referenceAngle = 0.0f; frequencyHz = 0.0f; dampingRatio = 0.0f; } /// Initialize the bodies, anchors, and reference angle using a world /// anchor point. void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor); /// The local anchor point relative to bodyA's origin. b2Vec2 localAnchorA; /// The local anchor point relative to bodyB's origin. b2Vec2 localAnchorB; /// The bodyB angle minus bodyA angle in the reference state (radians). float32 referenceAngle; /// The mass-spring-damper frequency in Hertz. Rotation only. /// Disable softness with a value of 0. float32 frequencyHz; /// The damping ratio. 0 = no damping, 1 = critical damping. float32 dampingRatio; }; /// A weld joint essentially glues two bodies together. A weld joint may /// distort somewhat because the island constraint solver is approximate. class b2WeldJoint : public b2Joint { public: b2Vec2 GetAnchorA() const; b2Vec2 GetAnchorB() const; b2Vec2 GetReactionForce(float32 inv_dt) const; float32 GetReactionTorque(float32 inv_dt) const; /// The local anchor point relative to bodyA's origin. const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; } /// The local anchor point relative to bodyB's origin. const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; } /// Get the reference angle. float32 GetReferenceAngle() const { return m_referenceAngle; } /// Set/get frequency in Hz. void SetFrequency(float32 hz) { m_frequencyHz = hz; } float32 GetFrequency() const { return m_frequencyHz; } /// Set/get damping ratio. void SetDampingRatio(float32 ratio) { m_dampingRatio = ratio; } float32 GetDampingRatio() const { return m_dampingRatio; } /// Dump to b2Log void Dump(); protected: friend class b2Joint; b2WeldJoint(const b2WeldJointDef* def); void InitVelocityConstraints(const b2SolverData& data); void SolveVelocityConstraints(const b2SolverData& data); bool SolvePositionConstraints(const b2SolverData& data); float32 m_frequencyHz; float32 m_dampingRatio; float32 m_bias; // Solver shared b2Vec2 m_localAnchorA; b2Vec2 m_localAnchorB; float32 m_referenceAngle; float32 m_gamma; b2Vec3 m_impulse; // Solver temp int32 m_indexA; int32 m_indexB; b2Vec2 m_rA; b2Vec2 m_rB; b2Vec2 m_localCenterA; b2Vec2 m_localCenterB; float32 m_invMassA; float32 m_invMassB; float32 m_invIA; float32 m_invIB; b2Mat33 m_mass; }; #endif